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Abstract
Ordered subsets expectation maximization (OS-EM) is widely used to 
accelerate image reconstruction in single photon emission computed 
tomography (SPECT). Speedup of OS-EM over maximum likelihood 
expectation maximization (ML-EM) is close to the number of subsets 
used. Although a high number of subsets can shorten reconstruction times 
significantly, it can also cause severe image artifacts such as improper erasure 
of reconstructed activity if projections contain few counts. We recently 
showed that such artifacts can be prevented by using a count-regulated OS-EM 
(CR-OS-EM) algorithm which automatically adapts the number of subsets for 
each voxel based on the estimated number of counts that the voxel contributed 
to the projections. While CR-OS-EM reached high speed-up over ML-EM in 
high-activity regions of images, speed in low-activity regions could still be 
very slow. In this work we propose similarity-regulated OS-EM (SR-OS-EM) 
as a much faster alternative to CR-OS-EM. SR-OS-EM also automatically 
and locally adapts the number of subsets, but it uses a different criterion for 
subset regulation: the number of subsets that is used for updating an individual 
voxel depends on how similar the reconstruction algorithm would update the 
estimated activity in that voxel with different subsets. Reconstructions of an 
image quality phantom and in vivo scans show that SR-OS-EM retains all 
of the favorable properties of CR-OS-EM, while reconstruction speed can 
be up to an order of magnitude higher in low-activity regions. Moreover our 
results suggest that SR-OS-EM can be operated with identical reconstruction 
parameters (including the number of iterations) for a wide range of count 
levels, which can be an additional advantage from a user perspective since 
users would only have to post-filter an image to present it at an appropriate 
noise level.
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1. Introduction

Today, statistical iterative reconstruction algorithms are the method of choice for the recon-
struction of single photon emission computed tomography (SPECT) images (Hutton et  al 
1997, Qi and Leahy 2006). The maximum likelihood expectation maximization (ML-EM) 
algorithm (Shepp and Vardi 1982, Lange and Carson 1984) is a standard in emission tomog-
raphy because it has consistent convergence behavior, incorporates an intrinsic non-negativity 
constraint, is applicable to complex scanner geometries, and has the possibility to incorpo-
rate advanced physical models of photon transport. In contrast to analytical methods that can 
reconstruct an image with a single pass through the data, ML-EM reconstruction often requires 
many iterations to reach sufficient resolution and quantitative accuracy. This can result in 
prohibitively long reconstruction times. The computational load for ML-EM reconstruction 
increases when a more accurate model of photon transport from object to projection-space is 
used, which is essential for e.g. optimal resolution, quantitative accuracy, noise suppression 
and artifact reduction.

In order to shorten reconstruction times, several block-iterative algorithms have been intro-
duced. These algorithms divide each iteration into a number of subsequent sub-iterations, each 
one using a different subset of the entire projection data to obtain a next estimate of the activ-
ity distribution. A widely used block-iterative version of ML-EM is the ordered subsets expec-
tation maximization (OS-EM) algorithm (Hudson and Larkin 1994). Despite the absence of 
a mathematical proof of convergence it has been shown that OS-EM often yields almost the 
same reconstructed images as ML-EM, provided that the number of subsets (NS) used is 
modest (Kamphuis et al 1996, Lalush and Tsui 2000). In such cases, the acceleration factor of 
OS-EM over ML-EM, in terms of iterative resolution recovery, is roughly proportional to the 
NS (Hudson and Larkin 1994, Kamphuis et al 1996).

Subsets are often selected in a way that each subset contains a number of complete SPECT 
projections. However, it was shown that it can be a great advantage for multi-pinhole SPECT 
to use subsets that each contain detector pixels that are distributed over all projections, which 
is known as pixel-based OS-EM (Branderhorst et al 2010). This way, OS-EM is operated with 
improved subset balance (i.e. all subsets are approximately equally sensitive to a voxel), even 
for a high NS. As a result, for high count data pixel-based OS-EM reaches acceleration fac-
tors an order of magnitude higher than those of traditional OS-EM without significant image 
degradation.

Even with pixel-based OS-EM artifacts may appear when scan times are short or injected 
activities are low (Vaissier et al 2013). Because the projection data of such scans is noisy 
due to low numbers of counts, it may happen that all detector pixels associated with a certain 
voxel (i.e. nonzero detection probability in the system matrix that models photon transport) 
do not contain any counts. The likelihood that this happens increases if only a subset of 
detector pixels is used to update the image, as is the case with OS-EM. If such a subset exists, 
the corresponding voxel will be updated to zero activity in the sub-iteration that uses this 
subset. Due to the multiplicative nature of the OS-EM update equation, the reconstructed 
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activity in this voxel will remain zero in subsequent sub-iterations despite the fact that other 
subsets may contain counts that are associated with this particular voxel. This can result 
in severe image artifacts, which is illustrated in figure 1 that displays maximum-intensity-
projections (MIPs) of OS-EM reconstructions of mouse bone scans. In previous work we 
showed that apparently obvious solutions, such as only allowing nonzero activity updates or 
simply excluding detector pixels that have no counts, do not solve the problem but can result 
in severe reconstruction artifacts too (Vaissier et  al 2013). Operating OS-EM with fewer 
subsets can prevent erasure of reconstructed activity, but no generally applicable guideline 
exists to establish the highest NS that can still be safely used. To minimize the risk of induc-
ing such artifacts one could always select a low NS, but this can lead to time-consuming 
reconstructions.

In order to prevent reconstruction artifacts in image regions with low activity, while still 
enabling accelerated image reconstruction needed for recovering resolution in structures with 
high activity uptake, we recently proposed a count-regulated OS-EM (CR-OS-EM) algorithm 
(Vaissier et al 2013). CR-OS-EM uses the concepts of adaptive subset formation and spatially 
adaptive voxel updates proposed by (Kadrmas 2001). It applies these concepts by combining 
multiple subsets in order to gather sufficient counts in each subset. The number of subsets that 
is combined is voxel-specific and depends on the reconstructed activity in that voxel. To this 
end CR-OS-EM uses a count threshold value (CTV) which only allows the update of a voxel 
in a sub-iteration of the algorithm if the estimated number of counts that the voxel has contrib-
uted to the current (combined) subset is larger than the preset CTV. This way, voxels with low 
activity will not be updated every sub-iteration, rather they are updated fewer times, each time 
using the projection pixels of combined subsets. We validated CR-OS-EM for pinhole SPECT 
of mice covering a wide range of activity distributions and count levels. CR-OS-EM reached 
speedup factors over ML-EM that were close to the NS in high-activity regions, while at the 
same time preventing erasure of reconstructed activity in regions with low activity. However, 
contrast recovery speed with CR-OS-EM decreased sharply with decreasing activity levels 
and as a result CR-OS-EM was often only as fast as ML-EM.

The aim of the present work is to improve the contrast recovery rate of regulated OS-EM 
while maintaining its advantages. To this end we developed a new criterion for spatially adap-
tive subset regulation. The new criterion is based on how similar the reconstruction algorithm 
would update the estimated activity in a voxel when different subsets of the projection data 
are used. In ML-EM, the activity of every voxel is multiplied by a voxel-specific update factor 

Figure 1. Maximum-intensity-projections acquired from ML-EM and OS-EM (32 and 
128 pixel-based subsets) reconstructions of mouse bone scans (189 MBq 99mTc-HDP) 
with a high number of counts (top row) and a much lower number of counts (bottom 
row). While high-count scans can be reconstructed using high acceleration factors (i.e. 
OS-EM with high NS), low-count scans can suffer from severe quantitative inaccuracies 
such as erased voxel activity in reconstructed images.
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that is calculated using the activity distribution obtained in the previous iteration, the system 
matrix and the measured projections. If only a subset of the projection data is used in an 
update (as is the case in each OS-EM sub-iteration), the update factor is subset-dependent. 
For a pixel-based subset implementation of OS-EM every subset contains detector pixels from 
all projection views and different subsets are spread out rather equally over the detectors. 
As a consequence, one would expect that in the limit of (almost) noiseless projections, the 
update factors that are calculated for the same image with different subsets do not differ too 
much and are rather equal to the ML-EM update factor. However, when measured projections 
become noisier (i.e. lower numbers of counts), differences between update factors calculated 
with different subsets are expected to increase due to statistical variations. Therefore we may 
be able to use the level of similarity between these different update factors as an indicator of 
how many subsets have to be combined in order to prevent artifacts in the reconstructions. 
This similarity-criterion is implemented in a new similarity-regulated OS-EM (SR-OS-EM) 
algorithm. For each voxel SR-OS-EM combines subsets to a level that the deviations of the 
subset update factors from the ML-EM update factor are all smaller than a preset percentage 
called the similarity threshold value (STV). Thus, the STV determines the maximally allowed 
variation between subset update factors and the ML-EM update factor of each voxel. As a 
result, the number of updates per voxel is high for voxels that use high-count projection data 
for their activity update, and lower if voxels use projection data with fewer counts. This work 
introduces SR-OS-EM and compares its reconstruction speed and quantification accuracy 
to CR-OS-EM and ML-EM for data acquired with a stationary small-animal multi-pinhole 
SPECT system.

2. Methods

2.1. Image reconstruction algorithms

2.1.1. ML-EM. ML-EM updates the previous activity estimate ai
k 1( )−�  in voxel i at iteration k 

by multiplication with an update factor that consists of a correction factor C i
k

MLEM,
( )  and a nor-

malization factor N iMLEM, :
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Here Mij is the system matrix element representing the probability that a non-scattered photon 

emitted from voxel i is detected in detector pixel j. Furthermore, pj and M ai i j i
k 1( )∑ −

′ ′ ′�  are the 
measured and expected number of gamma photon counts in detector pixel j with an energy 
within the selected photopeak window. The parameter sj� denotes the estimated number of scat-
tered and background counts within the photopeak in detector pixel j.

2.1.2. OS-EM. OS-EM uses the same equations  as ML-EM to update the image, but for  
each update only a subset Sl of the detector pixels is used in each sub-iteration l( l1 NS⩽ ⩽ ) 
of iteration k.
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OS-EM iteration k is defined to be completed (‘full iteration’) when all NS subsets have been tra-
versed. The subsequent sub-iteration (k  +  1,1) updates the image obtained at sub-iteration (k,NS).

2.1.3. CR-OS-EM. While OS-EM updates all voxels in each sub-iteration, CR-OS-EM only 
updates a voxel if the number of counts that the voxel contributed to the detector pixels of 
the current subset is higher than a preset count threshold value (CTV). To this end, in each 

sub-iteration (k,l) the algorithm estimates the number of counts y i
k l,( )�  that voxel i contributed 

to subset Sl:
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Voxel i is only updated at sub-iteration (k,l) if y CTVi
k l, ⩾( )�  or if the number of counts that 

voxel i contributed to all subsets that have been traversed since its last update exceeds the 
CTV. Once the CTV has been exceeded, the activity in voxel i is updated with an update factor 
that contains correction and normalization factors of all x( x1 NS⩽ ⩽ ) sub-iterations that have 
been traversed since its last update:
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Note that if x  =  1, (4) reduces to an ordinary OS-EM update. With CR-OS-EM, a low-activity 
voxel will not be updated in every sub-iteration, rather a combined (larger) subset is used for 
each update. If a voxel is not updated in NS subsequent sub-iterations, a forced activity update 
is performed using detector pixels from all subsets. Thus, the number of individual voxel 
updates within each full iteration of CR-OS-EM lies between 1 and NS. Note that the number 
of updates that are performed on a voxel can change with new activity estimates and can thus 
be different for different iterations. To obtain an initial estimate of the activity of individual 
voxels CR-OS-EM commences with a single ML-EM iteration.

2.1.4. SR-OS-EM. Like CR-OS-EM, SR-OS-EM also starts with a single ML-EM iteration. 
While calculating the ML-EM update factor for each voxel, the subset update factors (i.e. cor-
rection and normalization terms obtained with a subset of the projection data) are calculated 
as well for each voxel (for the same uniform start image). The subset update factors of voxel 
i are not used for an update, but are used to determine the percentage deviations Di

l( ) from the 
ML-EM update factor:
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Note that Ci
l1,( ) in (5) is calculated using the uniform start image as the current activity estimate 

for all subsets, i.e. in (2) one would have to use a ai
l

i
1, 1 start( ) =−� � . If Di

l( )  ⩽  similarity threshold 
value (STV) for all subsets, similarity of subset update factors is deemed sufficiently high 
to justify updates of voxel i in every sub-iteration of all subsequent SR-OS-EM iterations. 
However, if D STVi

l( ) >  for one or more subsets, then for this voxel subsequent subsets are 
paired to form NS/2 larger subsets by adding correction and normalization factors and calcu-
lating new update factors. These new update factors are then again compared to the ML-EM 
update factor and percentage deviations are determined as in (5). This process is repeated 
until all subset update factors deviate less than the STV from the ML-EM update factor. This 
way, each voxel will be updated either NS, NS/2, NS/4,…, 4, 2 or 1 times per full iteration in 
all subsequent SR-OS-EM iterations. Note that if subsets are paired to form new subsets, NS 
has to be a power of 2. In this work we used a pixel-based subset pattern with 128 subsets as 
described in (Branderhorst et al 2010). The pattern was chosen such that subsequent subsets 
were spatially well separated to minimize subset unbalance. Consequently, it is most advan-
tageous to combine subsequent subsets as the fewer larger subsets that are formed are still 
spatially separated.

The voxel update scheme of SR-OS-EM is determined only once in the first iteration. 
Our reason not to implement SR-OS-EM with update schemes that are re-determined each 
full iteration lies in the significant overhead that this would introduce: determining the voxel 
update scheme requires approximately as many calculations as an ML-EM iteration as cor-
rection and normalization factors for all subsets have to be calculated. Note that because these 
subset update factors are calculated using the same image they cannot be used for updating 
the image as this would imply a 1-subset (ML-EM)-update. As a result the algorithm would 
be much slower than the current implementation with an update scheme that is determined 
only once.

2.2. SPECT system

The U-SPECT-II system (MILabs BV, The Netherlands) is a dedicated small-animal SPECT 
system comprising three stationary detectors with cylindrical multi-pinhole collimators optim-
ized for differently sized rodents. In this work, the general-purpose mouse collimator (75 pin-
holes, ø 0.6 mm) was used for in vivo mouse scans. With this specific collimator the system 
can reach reconstructed resolutions of 0.4 mm (Van der Have et al 2009). The system matrices 
that were used for image reconstruction of the in vivo scans were obtained using the method 
described in (Van der Have et al 2008). In addition, simulated SPECT scans of a digital image 
quality phantom were performed based on the same collimator and detector geometry. All 
scans in this work were acquired using the scanning focus method (Vastenhouw and Beekman 
2007) that uses all projections of all bed positions together to reconstruct an image, rather than 
stitching reconstructions of individual bed positions.

2.3. Simulated SPECT scans of a digital image quality phantom

SPECT simulations of a digital image quality phantom were performed to find values of the 
CTV (CR-OS-EM) and the STV (SR-OS-EM) that maximize reconstruction speed while 
maintaining quantification accuracy similar to ML-EM. The digital mouse-sized cylindrical 
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phantom (figure 2, voxel size 0.15 mm) used for this purpose was the same as in our previous 
work (Vaissier et al 2013). It contained 5 spheres (ø 10 mm) filled with solution of 99mTc with 
different activity concentration. Each consecutive sphere contained a factor 10 lower activity 
concentration, ranging from 100 MBq ml−1 in sphere #1 to 10 kBq ml−1 in sphere #5. The 
remainder of the phantom was filled with a background activity concentration of 1 kBq ml−1. 
Such large differences in activity concentration might not realistically occur within a single 
scanned object, but it represents count levels from different scans with large differences in 
activity and scan time. In the center of each sphere a small spherical cold-lesion (ø 2 mm, no 
activity) was placed for contrast measurements. Ray tracing was used to simulate noiseless 
phantom projections and to pre-calculate the system matrix (voxel size 0.3 mm). The simula-
tor accounted for resolution-degrading effects of pinhole diameter, pinhole edge penetration 
and the intrinsic resolution of the detectors (Gieles et al 2002, Goorden et al 2011). Poisson 
statistics were applied to generate 20 noise realizations from the noiseless projections taking 
into account the total phantom activity (57.7 MBq), scan duration (60 min) and detector effi-
ciency for 140 keV gamma rays (89%).

All noise realizations were reconstructed with ML-EM (gold standard), CR-OS-EM  
(128 pixel-based subsets) with different CTVs (80k, 40k and 20k counts ml−1) and SR-OS-EM 
(128 pixel-based subsets) with different STVs (80%, 40% and 20%). OS-EM reconstructions 
of the image quality phantom are shown for a range of NS (16, 32, 64 and 128) in the sup-
plementary data (stacks.iop.org/PMB/61/4300/mmedia). Images were post-filtered with a 3D 
Gaussian kernel (0.4 mm full-width-at-half-maximum).

The quantification accuracy of each algorithm was evaluated in each sphere by quantifying 
the reconstructed activity in a spherical volume-of-interest (ø 12 mm) centered on the sphere. 
From these values we calculated for each sphere the mean and standard deviation of the activ-
ity over the noise realizations, which were expressed as percentages of the true activity.

Cold-lesion contrast recovery in the spheres was used as a performance measure for itera-
tive reconstruction speed. Cold-lesion contrast inside sphere #n at iteration k was defined as 
the contrast between the average reconstructed activity per voxel A n k

hot
,( )  in a spherical shell 

(ø 4–8 mm) inside the sphere and the average reconstructed activity per voxel A n k
cold

,  ( )  inside a 
spherical volume (ø 1 mm) centered on the cold-lesion:

A A

A
Contrast n k

n k n k

n k
, hot

,
cold

,

hot
,

( )
( ) ( )

( )=
−

 (6)

The normalized standard deviation of the reconstructed activity in all Q voxels that were 
used to calculate A n k

cold
,( )  was a measure of the noise in sphere #n at iteration k:

Figure 2. Cylindrical image quality phantom containing 5 activity-filled spheres with 
spherical cold-lesions (no activity) at their centers. Each consecutive sphere contained 
ten times lower activity concentration, ranging from 100 MBq ml−1 (sphere #1) to  
10 kBq ml−1 (sphere #5). Background activity concentration was 1 kBq ml−1. Image 
is shown on a log-grayscale.
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The average contrast and the average noise at iteration k were obtained by averaging contrast 
and noise over all noise realizations.

We determined the contrast recovery speeds of CR-OS-EM and SR-OS-EM with respect to 
ML-EM by comparing the number of iterations that were required to achieve approximately 
equal contrast and noise (different algorithms never achieve the exact same contrast-noise). 
Iterations that were compared this way were selected in the following manner. Let Contrast n

max  ( )  
be the maximum contrast value in sphere #n obtained by ML-EM over all iterations that were 
performed. We first determined the lowest iteration numbers at which ML-EM recovered a 
contrast of at least 95% and 99% (sphere #1), or 80%, 95% and 99% (spheres #3 and #5) of 
Contrast n

max  ( ) . Subsequently, the corresponding ML-EM noise levels at these iteration numbers 
were determined. Then, the iteration numbers with a noise value closest to the ML-EM noise 
levels were determined for CR-OS-EM and SR-OS-EM.

2.4. Mouse SPECT

SPECT scans of mice that cover a wide range of count levels were reconstructed to evalu-
ate the performance of CR-OS-EM and SR-OS-EM on in vivo data. ML-EM images with 
128 iterations served as references to CR-OS-EM and SR-OS-EM images with 2, 4, 6 
and 8 iterations. CR-OS-EM was operated with CTV  =  40k counts ml−1 and SR-OS-EM 
with STV  =  40% and both were operated with 128 pixel-based subsets. These settings 
were selected based on the results of the simulated image quality phantom scans. OS-EM 
reconstructions of the in vivo scans are shown for a range of NS (16, 32, 64 and 128) in 
the supplementary data. Reconstructions were post-filtered with a 3D Gaussian kernel (1 mm 
full-width-at-half-maximum).

A 30 g male mouse was anesthetized with isoflurane and 99mTc-hydroxymethylene 
diphosphonate (99mTc-HDP, 189 MBq) was administered via injection in the tail vein. 
Scanning started right before injection. The mouse was scanned for 60 min in frames of 
1 min. High-count projection data was obtained by summing the projection data of the final 
50 frames (50 min scan). Projection data with few counts was obtained by using only the 
projection data from the last frame (1 min scan). This experiment was conducted following 
protocols approved by the Animal Research Committee of the University Medical Center 
Utrecht.

Furthermore, a low-count mouse tumor scan was performed. A 20 g male mouse was inoc-
ulated in the shoulder with 22Rv1 human prostatic carcinoma cells. The tumor developed for 
3 weeks and the mouse was then intravenously injected with a proprietary 99mTc-prostate-
specific-membrane-antigen-targeted (99mTc-PSMA, 16.7 MBq) radioligand (Kularatne et al 
2009). Four hours after injection the mouse was sacrificed and a 32 min scan was performed. 
This experiment was conducted in accordance with Purdue University Animal Care and User 
Committee guidelines.

Scatter correction was performed using a triple-energy-window technique (King et  al 
1997). The estimated scatter projections were scaled according to the ratio of the window 
widths, and were incorporated in the reconstructions according to the method of Bowsher 
et al (1996). Table 1 provides for each scan the number of counts in the photopeak and scatter 
windows.
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3. Results

3.1. Simulated SPECT scans of a digital image quality phantom

Figure S1 in the supplementary data shows OS-EM image slices for different NS. These 
images show that OS-EM resulted in artifacts in the low-activity spheres for all NS, and even 
led to erasure of reconstructed activity in spheres #4 and #5. The severity of the artifacts is 
quantified in table S1 by determining reconstructed activities in all spheres (mean and stan-
dard deviation over 20 noise realizations) and comparing these to the true sphere activities. 
The performance of ML-EM, CR-OS-EM and SR-OS-EM was quantified in the same way 
(table 2) and corresponding image slices are displayed in figure 3. Figure 3(a) shows that 
CR-OS-EM and SR-OS-EM images did not have the low-count induced artifacts that were 
observed for OS-EM. Figure 3(b) shows the number of voxel updates per full iteration for 
CR-OS-EM and SR-OS-EM for the same image slices that are displayed in figure 3(a). This 
figure illustrates that CR-OS-EM and SR-OS-EM generally allow most updates per full itera-
tion (i.e. more subsets) in high-activity regions of the image. For CR-OS-EM the number of 
updates in a voxel appears to be directly related to the level of the reconstructed voxel activ-
ity while in SR-OS-EM low-activity voxels close to high-activity regions are also frequently 
updated. As expected, for CR-OS-EM a lower CTV allows for more voxel updates per full 
iteration, while for SR-OS-EM a higher STV allows for more voxel updates.

Contrast recovery speed of CR-OS-EM and SR-OS-EM was evaluated with a value of the 
CTV (CR-OS-EM) and STV (SR-OS-EM) that resulted in similar quantification accuracy as 
ML-EM for all spheres of the image quality phantom. To this end, we first selected from the 
tested CTVs and STVs those that resulted in reconstructed sphere activities that were at most 

Table 1. Number of counts in photopeak and scatter windows of in vivo scans.

# counts in photopeak  
window

# counts in 
scatter windows

50 min bone scan 15.9  ×  106 2.62  ×  106

1 min bone scan 0.29  ×  106 0.04  ×  106

32 min tumor scan 0.26  ×  106 0.16  ×  106

Table 2. Reconstructed activities in spheres of image quality phantom as percentages 
of true activities (mean and standard deviation over 20 noise realizations).

Sphere #1 Sphere #2 Sphere #3 Sphere #4 Sphere #5

ML-EM 99.9  ±  0.02 100  ±  0.06 100  ±  0.26 99.8  ±  0.90 90.9  ±  2.35
CR-OS-EM (CTV  =  80k) 100  ±  0.22 99.8  ±  0.35 99.8  ±  0.52 99.3  ±  0.91 90.7  ±  2.38
CR-OS-EM (CTV  =  40k) 100  ±  0.23 99.8  ±  0.40 99.5  ±  0.57 99.1  ±  0.94 90.5  ±  2.29
CR-OS-EM (CTV  =  20k) 99.9  ±  0.23 99.8  ±  0.51 99.1  ±  0.72 98.5  ±  1.27 89.7  ±  2.38
SR-OS-EM (STV  =  80) 100  ±  0.23 99.9  ±  0.82 100  ±  1.92 100  ±  2.67 91.3  ±  3.45
SR-OS-EM (STV  =  40) 100  ±  0.23 99.9  ±  0.74 100  ±  1.03 100  ±  1.90 91.5  ±  2.73
SR-OS-EM (STV  =  20) 100  ±  0.23 99.9  ±  0.42 99.8  ±  0.65 99.9  ±  1.24 91.2  ±  2.46

Note: activity in each sphere was determined in the iteration that achieved a contrast level similar to the ML-EM 
iteration with 95% of the maximum recovered contrast. For all algorithms activity quantification became less 
reliable with decreasing number of counts. For CR-OS-EM (NS  =  128) we found that the quantification accuracy 
became worse for lower (less strict) CTVs as activities deviated more from the true activity and standard devia-
tions increased. Quantification accuracy of SR-OS-EM (NS  =  128) became worse with higher (less strict) STVs as 
standard deviations increased.
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1% different from those obtained with ML-EM in terms of mean and standard deviation of 
the sphere activities over 20 noise realizations (table 2). CR-OS-EM met this requirement for 
CTV  =  40k and 80k, SR-OS-EM for STV  =  40% and 20%. From these values we selected 
CTV  =  40k and STV  =  40% because these allowed the highest number of voxel updates and 
therefore are expected to result in the highest reconstruction speeds.

Figure 4 displays plots of contrast versus noise of CR-OS-EM and SR-OS-EM with these 
parameter settings for sphere #1 (highest activity), sphere #3 (medium activity) and sphere 
#5 (lowest activity). The solid lines are contrast-noise curves obtained with ML-EM. The 
symbols inside each of the dashed rectangles denote contrast-noise obtained with CR-OS-EM 
and SR-OS-EM closest to a specific contrast level of ML-EM, namely 95% and 99% of the 
maximum ML-EM contrast (sphere #1) or 80%, 95% and 99% of the maximum ML-EM 
contrast (spheres #3 and #5). The corresponding iteration numbers are provided between 
square brackets in each graph.

From the iteration numbers in the graphs of figure 4 one can infer that CR-OS-EM resulted 
in speedup factors over ML-EM ranging from about 28 to 33 in sphere #1, while for the same 

Figure 3. (a) Slices through sphere centers of average images (average over 20 noise 
realizations) of image quality phantom (57.7 MBq, 60 min) for ML-EM, CR-OS-EM  
and SR-OS-EM. Spheres #1–5 are represented on different grayscales to allow for 
simultaneous visualization. Every sphere is shown at the iteration number which 
achieved a contrast level similar to 95% of the maximum contrast recovered by  
ML-EM in that sphere. Quantified sphere activities are found in table 2. (b) Corresponding 
images showing the number of voxel updates per full iteration in the spheres. With  
CR-OS-EM a lower CTV allows for more voxel updates, while with SR-OS-EM a 
higher STV allows for more voxel updates.
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Figure 4. Plots of contrast versus noise in sphere #1 (top graph), sphere #3 (middle 
graph) and sphere #5 (bottom graph) of image quality phantom (57.7 MBq, 60 min,  
20 noise realizations). Black crosses represent ML-EM iterations at which 95% and 99% 
(sphere #1), or 80%, 95% and 99% (spheres #3 and #5) of the maximum ML-EM 
contrast was recovered. As a reference, full ML-EM curves are also plotted (solid lines). 
Red and blue crosses in the same dashed rectangles represent iterations of CR-OS-EM 
(NS  =  128, CTV  =  40k counts ml−1) and SR-OS-EM (NS  =  128, STV  =  40%) with 
noise values closest to the selected ML-EM points. Corresponding iteration numbers are 
provided between square brackets. From these iteration numbers follows that speedup 
factors of SR-OS-EM over ML-EM ranged from 85 in sphere #1 down to  >2.0 in 
sphere #5. Contrast recovery with SR-OS-EM was always faster than with CR-OS-
EM, with SR-OS-EM reaching up to an order of magnitude faster contrast recovery in 
sphere #3.
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sphere SR-OS-EM reached speedup factors over ML-EM ranging from 67 to 85. Note that 
if the first iteration of SR-OS-EM (i.e. the ML-EM iteration) would be disregarded, speedup 
factors of SR-OS-EM over ML-EM would be very close to the NS (128), which is the highest 
acceleration one can expect. In sphere #3 contrast recovery of CR-OS-EM and SR-OS-EM 
was slower: CR-OS-EM resulted in speedup factors over ML-EM that ranged from about 1.7 
to 2.3, while SR-OS-EM reached speedup factors over ML-EM that ranged from 9.0 to 23. 
Thus, contrast recovery of SR-OS-EM was up to an order of magnitude faster than that of 
CR-OS-EM. Note that the clusters of points with similar noise and contrast in sphere #3 were 

Figure 5. (a) Top row: image slices through ML-EM images (128 iterations) of 
mouse bone scans (189 MBq 99mTc-HDP, 50 min and 1 min) and mouse tumor scan  
(16.7 MBq 99mTc-PSMA (Kularatne et  al 2009), 32 min). Lower rows: for each 
scan profiles for CR-OS-EM (NS  =  128, CTV  =  40k counts ml−1) and SR-OS-EM 
(NS  =  128, STV  =  40%) at different numbers of iterations together with ML-EM 
profile with 128 iterations (reference profile). Profile regions are indicated in ML-EM 
image slices (top row). CR-OS-EM required 8 iterations to reduce profile deviations 
of all scans to  <5% with respect to ML-EM, while SR-OS-EM required only 4 
iterations (table 3). (b) MIPs for ML-EM (128 iterations), CR-OS-EM (8 iterations) and  
SR-OS-EM (4 iterations).
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sometimes rather far apart which is a result of the high contrast recovery speed of SR-OS-EM: 
only 2 iterations SR-OS-EM recovered 80%�  of the maximum ML-EM contrast and 3 itera-
tions SR-OS-EM recovered 95%�  of the maximum ML-EM contrast. So, actual speedup 
of SR-OS-EM over ML-EM and CR-OS-EM in sphere #3 was even higher than aforemen-
tioned. Finally, from figure 4 follows that contrast recovery speed of CR-OS-EM in sphere 
#5 was equal to that of ML-EM. SR-OS-EM achieved 2–3 times higher speed than ML-EM 
and CR-OS-EM in this sphere. Figure 4 also shows that contrast recovered by SR-OS-EM in 
sphere #5 was lower than that of ML-EM and CR-OS-EM. However, the differences in con-
trast between the algorithms were smaller than the standard deviations of the contrast over the 
noise realizations. Such high standard deviations were a result of the very low-count projec-
tions associated with sphere #5. Results of contrast recovery in spheres #1, #3 and #5 for 
the other CTVs and STVs can be found in figure S2 in the supplementary data.

3.2. Mouse SPECT

The top row of figure 5(a) shows slices through the ML-EM (128 iterations) images of the 
mouse bone scans and mouse tumor scan. Profile regions are indicated in the image slices. 
These ML-EM profiles are used as references and are compared to the image profiles of 
CR-OS-EM (NS  =  128, CTV  =  40k counts ml−1) and SR-OS-EM (NS  =  128, STV  =  40%) 
with 2, 4, 6 and 8 iterations. This way, the differences in speed at which small anatomical 
features are recovered can be visualized and quantified.

Table 3 contains the quantitative profile deviations from the reference (ML-EM) 
profiles. Profile deviation is defined as the mean of the absolute intensity differences 
expressed as percentages of the maximum ML-EM profile intensity. For an equal number 
of iterations, the deviations of SR-OS-EM were smaller than those of CR-OS-EM for 
all scans. Moreover, if we take the deviation of 8 iterations CR-OS-EM as a benchmark, 
we find that SR-OS-EM reached smaller deviations after only 2 iterations (50 min bone 
scan) or 4 iterations (1 min bone scan and 32 min tumor scan). Thus, while CR-OS-EM 
required a maximum of 8 iterations to reduce the profile deviations of all scans to  <5%, 
SR-OS-EM only required a maximum of 4 iterations to achieve this. Figure  5(b) dis-
plays MIPs of ML-EM images with 128 iterations together with MIPs of CR-OS-EM 
and SR-OS-EM images with 8 and 4 iterations, respectively. The results of the in vivo 
scans suggest that SR-OS-EM can be operated with a single choice of the reconstruction 
parameters (NS  =  128, STV  =  40% and 4 iterations) for a wide range of count levels 
while CR-OS-EM should be operated with more iterations (NS  =  128, CTV  =  40k and 8 
iterations) to achieve similar results.

Table 3. Mean deviations of CR-OS-EM (NS  =  128, CTV  =  40k) and SR-OS-EM 
(NS  =  128, STV  =  40%) image profiles from ML-EM image profiles (128 iterations).

Iterations

(High-count)  
50 min bone scan

(Low-count)  
1 min bone scan

(Low-count)  
32 min tumor scan

CR-OS-EM SR-OS-EM CR-OS-EM SR-OS-EM CR-OS-EM SR-OS-EM

2 11% 1.6% 17% 9.9% 11% 3.4%
4 4.0% 1.5% 13% 3.3% 4.1% 1.8%
6 2.5% 1.5% 7.9% 2.6% 2.7% 1.4%
8 1.9% 1.5% 4.9% 2.3% 2.0% 1.2%

Note: Values are percentages of maximum value of ML-EM profiles.
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OS-EM reconstructions of the in vivo scans are shown for a range of NS in the supplemen-
tary data (figure S3). These images show that OS-EM resulted in low-count induced artifacts 
which were more severe for higher NS.

4. Conclusion and discussion

Recently we showed that OS-EM can cause severe quantitative inaccuracies such as improper 
erasure of reconstructed activity in image regions with low activity. As an initial solution we 
proposed CR-OS-EM which can attain high speedup factors over ML-EM in image regions 
with high activity and prevents erasure of reconstructed activity in image regions with low 
activity. However, contrast recovery with CR-OS-EM in regions with low activity can still 
be very slow. In this paper we introduced and validated SR-OS-EM as a fast alternative to 
CR-OS-EM.

The in vivo scans were all acquired with the same collimator and radioisotope. For these 
scans we showed that quantitative differences between SR-OS-EM and ML-EM (128 itera-
tions) were reduced  <5% within four iterations of SR-OS-EM. These results suggest that 
SR-OS-EM can be operated with an identical parameter setting for a wide range of count lev-
els. If this parameter setting results in similar performance with other collimators and radio-
isotopes remains to be investigated. The advantage of a single parameter setting for a user is 
that they do not have to compromise between resolution and quantitative accuracy as they only 
have to use a post-filter to present the image at an appropriate noise level.

The NS determines the maximum possible number of individual voxel updates per full 
SR-OS-EM iteration. A lower or higher NS would respectively reduce or increase the maxi-
mum possible number of voxel updates which could result in different reconstruction speeds 
for high-count data, as for high-count data SR-OS-EM may actually use all subsets individu-
ally instead of combining them into larger subsets. Therefore, ideally one would always like 
to choose a large enough NS such that the reconstruction speed is never limited by NS. In this 
work we chose to use NS  =  128 because it has been shown by (Branderhorst et al 2010) that 
this high NS still results in balanced subsets.

The reconstruction times with 16 CPUs (16  ×  AMD Opteron 6344, 2.6 GHz) of a sin-
gle iteration ML-EM, CR-OS-EM and SR-OS-EM were determined for the image qual-
ity phantom. These amounted to 6 min 3 s (ML-EM), 11 min 55 s (CR-OS-EM) and 9 min 
33 s (SR-OS-EM). The extra time that was required for a CR-OS-EM or SR-OS-EM itera-
tion compared to ML-EM depended on the number of CPUs used; reconstruction times of 
CR-OS-EM and SR-OS-EM compared to ML-EM were both only 13% longer if reconstruc-
tion was performed on a single CPU. The larger relative differences in reconstruction times 
between ML-EM and CR-OS-EM/SR-OS-EM with 16 CPUs compared to 1 CPU are prob-
ably a result of the way the algorithms were parallelized. Note that although the time per 
iteration of CR-OS-EM and SR-OS-EM is larger than that of ML-EM, both CR-OS-EM and 
SR-OS-EM require many fewer iterations than ML-EM to reconstruct high-resolution images.

Contrast recovery speedup of CR-OS-EM over ML-EM decreased with increasing num-
bers of iterations in spheres #1 and #3 of the phantom (figure 4). We believe that the reason 
for this is that in CR-OS-EM the number of updates of a voxel directly depends on the recon-
structed activity values of voxels, which is illustrated in figure 3(b): CR-OS-EM updates the 
cold lesions less often than the hot spheres. With higher iterations the reconstructed activity in 
the cold-lesion voxels becomes lower and therefore the number of updates decreases, which 
slows down contrast recovery. The number of voxel updates with SR-OS-EM does not directly 
depend on the reconstructed activity values of voxels, rather it is directly related to the quality 
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of the projection data, which is comparable for neighboring cold and hot voxels. As a result, 
cold and hot voxels that lie in the same neighborhood are updated at a similar rate. This can 
also be inferred from figure 3(b): SR-OS-EM updates the cold lesions approximately as fre-
quently as the hot surrounding.

Like CR-OS-EM, SR-OS-EM uses the concepts of adaptive subset formation and spatially 
adaptive voxel updates. The number of voxel updates is therefore likely to be non-uniform 
over the image, which can result in non-uniform image resolution. Users should be aware of 
non-uniform resolution as this may introduce errors in quantitative comparisons, although we 
showed in this work that quantitative differences between SR-OS-EM and ML-EM were small.

Besides CR-OS-EM and SR-OS-EM, other algorithms have been proposed that also handle 
subsets differently than OS-EM, such as StatREM (Kadrmas 2001), RAMLA (Browne and De 
Pierro 1996) and accelerated C-OS-EM (Hsiao and Huang 2010). We already tested StatREM 
in our previous work (Vaissier et al 2013) and found that it did not always prevent erasure 
of reconstructed activity in image regions with low activity. RAMLA uses relaxation within 
a modified version of OS-EM. There are no rules for finding optimal relaxation sequences 
in terms of reconstruction speed. Therefore, a separate optimization study is required and 
a comparison between RAMLA and SR-OS-EM remains a topic for future investigations. 
Accelerated C-OS-EM does not require a relaxation schedule but it requires an acceleration 
factor to be set similar to accelerated ML-EM (Hwang and Zeng 2006). Although accelerated 
C-OS-EM was found to be faster than (parameter-free) C-OS-EM, there was no obvious addi-
tional speed increase of accelerated C-OS-EM for NS higher than 16.
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