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Abstract

The purpose of this study was to validate 99mTc-3P-RGD2 single-photon emission computed tomography/computed tomography

(SPECT/CT) as an imaging tool to monitor avb3 expression and tumor necrosis. The animal model was established by subcutaneous

injection of 5 3 106 U87MG cells into the shoulder flank of each mouse. Imaging was performed using the U-SPECT-II/CT scanner

(Milabs, Utrecht, the Netherlands). Tumor volumes were determined, and the tumor uptake of 99mTc-3P-RGD2 was calculated on the

basis of SPECT/CT and compared to that from biodistribution. Immunohistochemistry was performed to determine CD31 and avb3

expression levels. We found that the tumor detection limit was < 0.5 mm3 by 99mTc-3P-RGD2 SPECT/CT. The tumor uptake of 99mTc-

3P-RGD2 from SPECT/CT was almost identical to that from biodistribution. The avb3 was expressed mainly on blood vessels for the

tumors of 0.2 to 0.5 cm3. In larger tumors, tumor avb3 expression increased due to more contribution from glioma cells. When tumors

were . 0.5 cm3, the %ID/cm3 uptake of 99mTc-3P-RGD2 decreased because of necrosis. The overall relationship between the tumor

size and %ID of 99mTc-3P-RGD2 was modeled as a quadratic polynomial fitting curve, with R2 being . .95. 99mTc-3P-RGD2 SPECT/CT is

excellent for monitoring avb3 expression and tumor necrosis during tumor growth and may become a screening tool for patient

selection before anti-avb3 therapy.

G LIOBLASTOMA MULTIFORME (GBM) is the most

aggressive type of primary brain tumor. Despite

aggressive therapy, the median survival of GBM patients is

< 12 months.1 GBM is characterized by high proliferation

of tumor cells, necrosis, and proliferation of capillary

endothelial cells.2 Although GBM is highly vascularized,

inefficient microcirculation may contribute to tumor

hypoxia,3–5 which plays a role in GBM development and

angiogenesis and often results in the formation of

intratumoral necrosis.3 Studies show that the degree of

necrosis within GBM correlates inversely with patient

overall survival rate.6–8

Angiogenesis is vital in the progression of gliomas to

GBM and is regulated by proteins such as integrins,9,10

which are heterodimeric transmembrane proteins that

mediate cellular attachment to the extracellular matrix or

adjacent cells. Among the integrins identified and

characterized so far, integrin avb3 is studied most

extensively. The avb3 is a receptor for many extracellular

matrix proteins with the exposed arginine-glycine-aspartic

acid (RGD) tripeptide sequence. The avb3 is expressed in

low levels on epithelial cells and mature endothelial cells

but is highly expressed in neuroblastomas, glioblastomas,

melanomas, and carcinomas of the breast and lung.11–15

Although glioblastoma rarely metastasizes due to the

blood-brain barrier, it almost always recurs locally due to

diffuse infiltration resulting from angiogenesis.16 Given

that gliomas are extremely invasive, with high avb3

expression,11,17 the avb3 is an interesting biomarker to

develop new radiotracers for glioma detection18,19 and

anti-avb3 drugs for glioma therapy.20–22

Many high-affinity avb3 antagonists have been eval-

uated.23,24 They were designed to block tumor angiogen-

esis and inhibit tumor growth. For example, cilengitide

(EMD121974) is a cyclic RGD peptide that binds to the

avb3 with high affinity.22 Cilengitide displays antiangio-

genic effects against brain tumors25,26 and enhances the

antitumor effects of chemotherapy and radiotherapy.27 As

a single anti-avb3 agent, it was well tolerated, with no

obvious toxicity at a dose of 2,000 mg (~ 30 mg/kg, twice

a week) via intravenous injection,28 and showed moderate

therapeutic responses in patients with recurrent glioma.29–33

From the School of Health Sciences, Purdue University, IN, and the

Department of Nuclear Medicine, Nanjing First Hospital, Nanjing

Medical University, Nanjing, China.

Address reprint requests to: Shuang Liu, PhD, School of Health Sciences,

Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907;

e-mail: liu100@purdue.edu.

DOI 10.2310/7290.2012.00019

# 2013 Decker Publishing

Molecular Imaging, Vol 12, No 1 (January–February 2013): pp 39–48 39



Cilengitide is under phase III clinical investigations for

treatment of recurrent GBMs. However, there were no

molecular imaging tools that could be used to determine the

avb3 status before cilengitide treatment. If the patient has

high avb3 expression, cilengitide therapy would likely be

effective. If the patient has little avb3 expression, the therapy

would not be effective regardless of the amount of

cilengitide administered. Thus, it is of great clinical benefit

to use avb3-targeted radiotracers to measure the relative

avb3 levels (high, medium, or low) and to determine who

will benefit most from the cilengitide therapy by positron

emission tomography (PET) or single-photon emission

computed tomography (SPECT).

Radiolabeled cyclic RGD peptides have been evaluated

for tumor imaging. Among various radiotracers evaluated

in preclinical animal models, [18F]Galacto-RGD was the

first in clinical trials in cancer patients.34–36 It was found

that the tumor uptake of [18F]Galacto-RGD correlated well

with avb3 expression levels.34,35 However, clinical investi-

gations with [18F]Galacto-RGD were terminated due to a

lack of preparative modules for routine preparations and

unaccepted radiation exposure to radiopharmacists.
99mTc-3P-RGD2 is a 99mTc-labeled cyclic RGD peptide

dimer and was developed as a SPECT radiotracer for early

cancer detection.37–39 It is currently in clinical trials for

imaging lung carcinomas.40 99mTc-3P-RGD2 SPECT/

computed tomography (CT) offers significant advantages

over PET with 18F-labeled cyclic RGD peptides with

respect to the cost and clinical availability. Previously, we

found that 99mTc-3P-RGD2 is specific for the avb3 and its

tumor uptake is directly correlated to avb3 expression

levels.41 In this study, we evaluated its capability to image

gliomas. The objective was to validate 99mTc-3P-RGD2

SPECT/CT as an imaging platform to monitor avb3

expression and tumor necrosis during glioma growth in

small animals.

Materials and Methods

Chemicals and Analytical Method

Trisodium triphenylphosphine-3,39,399-trisulfonate (TPPTS)

and tricine were purchased from Sigma-Aldrich (St. Louis,

MO). HYNIC-3P-RGD2 (HYNIC 5 6-(2-(2-sulfonatoben-

zaldehyde)hydrazono)nicotinyl; 3P-RGD2 5 PEG4-E[PEG4-c

(RGDfK)]2) and PEG4 5 15-amino-4,7,10,13-tetraoxapenta-

decanoic acid) was prepared using the method previously

described in the literature.37 Na99mTcO4 was obtained from

Cardinal HealthCare (Chicago, IL). The radio–high-performance

liquid chromatography (radio-HPLC) method used a

LabAlliance system (Scientific Systems, Inc., State College,

PA) equipped with a b-ram IN-US detector and Zorbax

C18 column (4.6 mm 3 250 mm, 300 Å pore size). The

flow rate was 1 mL/min. The mobile phase was isocratic

with 90% solvent A (25 mM NH4OAc buffer, pH 5 5.0)

and 10% solvent B (acetonitrile) at 0 to 5 minutes,

followed by a gradient mobile phase from 10% B at

5 minutes to 40% B at 20 minutes.

Radiolabeling and Dose Preparation

99mTc-3P-RGD2 was prepared according to the method

previously described in the literature38 using the lyophilized

kit formulation, which contains 20 mg HYNIC-3P-RGD2,

z5 mg TPPTS, 6.5 mg tricine, 40 mg mannitol, 38.5 mg

disodium succinate hexahydrate, and 12.7 mg succinic acid.
99mTc-labeling was accomplished by adding 1 to 1.5 mL of

Na99mTcO4 solution (1,110–1,850 MBq). The reconstituted

vial was then heated at 100uC for 30 minutes. The resulting

solution was analyzed by radio-HPLC. The radiochemical

purity was . 90%. Doses were prepared by dissolving the

radiotracer in saline to a concentration of < 1 MBq/mL for

biodistribution and 370 to 525 MBq/mL for imaging studies.

Animal Model

Imaging and biodistribution studies were performed in

compliance with National Institutes of Health animal

experiment guidelines.42 The animal study protocol

was approved by the Purdue University Animal Care and

Use Committee. U87MG cells (American Type Culture

Collection [ATCC], Manassas, VA) were cultured in

Minimum Essential Medium supplemented with 10% fetal

bovine serum (FBS, ATCC) and 1% penicillin and

streptomycin (Gibco [Langley, OK]) solution at 37uC in a

humidified atmosphere of 5% CO2 in air. Cells were grown

as monolayers and were harvested or split when they

reached 90% confluence to maintain exponential growth.

Female athymic nu/nu mice were purchased from Harlan

(Indianapolis, IN) at 4 to 5 weeks of age. Each mouse was

implanted subcutaneously with 5 3 106 U87MG cells into

the shoulder flanks. The tumor volume was measured every

2 days for the first 2 weeks and every day for the next 3

weeks with a digital caliper. The tumor volume was

calculated by the formula (length 3 width2)/2.

Biodistribution Protocol

Animals with various tumor sizes (0.05–1.7 g) were used

for biodistribution studies. Each glioma-bearing mouse
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(20–25 g) was administered with < 1 MBq of 99mTc-3P-

RGD2 in 0.1 mL saline via the tail vein. At 60 minutes

postinjection, animals were sacrificed by sodium pento-

barbital overdose (< 200 mg/kg). Blood samples were

withdrawn from the heart of tumor-bearing mice. Tumors

were harvested, washed with saline, dried with absorbent

tissue, weighed, and counted on a PerkinElmer Wizard

1480 c-counter (Shelton, CT). The tumor uptake was

calculated and reported as the percentage of injected dose

(%ID) or percentage of injected dose per gram of wet

tumor tissue (%ID/g).

Imaging Protocol for SPECT/CT

SPECT/CT images were obtained using the U-SPECT-II/CT

scanner (Milabs, Utrecht, the Netherlands) equipped with a

0.6 mm multipinhole collimator. The glioma-bearing

mouse was injected with 37 to 55.5 MBq of 99mTc-3P-

RGD2 in 0.1 mL saline via the tail vein. At 60 minutes

postinjection, the animal was placed into a shielded

chamber connected to an isoflurane anesthesia unit

(Univentor, Zejtun, Malta). Anesthesia was induced using

an airflow rate of 350 mL/min and < 3.0% isoflurane. After

induction of anesthesia, the animal was immediately placed

supine on the scanning bed. The airflow rate was reduced to

< 250 mL/min with < 2.0% isoflurane. Rectangular scans

in regions of interest (ROI) from both SPECT and CT were

selected on the basis of the orthogonal optical images

provided by the integrated webcams. After SPECT acquisi-

tion (75 projections over 30 minutes per frame, two

frames), the animal was then translated into the attached CT

scanner and imaged using the ‘‘normal’’ acquisition settings

(2u intervals) at 45 kV and 500 mA. After CT acquisition, the

animal was allowed to recover in a lead-shielded cage.

Image Reconstruction and Data Processing

SPECT reconstruction was performed using a POSEM

(pixelated ordered-subsets expectation maximization)

algorithm with 6 iterations and 16 subsets. CT data were

reconstructed using a cone-beam filtered back-projection

algorithm (NRecon v1.6.3, Skyscan, Belgium). After

reconstruction, the SPECT and CT data were automati-

cally coregistered according to the movement of the

robotic stage and then resampled to equivalent voxel sizes.

Coregistered images were further rendered and visualized

using PMOD software (PMOD Technologies, Zurich,

Switzerland). A three-dimensional (3D) gaussian filter

(0.8 mm full width at half maximum [FWHM]) was

applied to smooth noise, and the look-up tables were

adjusted for good visual contrast. The reconstructed

images were visualized as both orthogonal slices and

maximum intensity projections.

Radioactivity Quantification

Radiation sources of a known amount of radioactivity were

imaged and reconstructed using the same scanning protocol

described above. A standard curve (Figure S1, available in

the online version only) was generated to correlate the pixel

intensities in the reconstructed images to the radioactivity as

measured by a c-counter. Tumor delineation was per-

formed on CT and SPECT images according to the method

previously described in the literature, with some modifica-

tions.43 Briefly, the ROI were drawn manually to cover the

entire tumor based on the transverse view of the CT image.

For tumor delineation with SPECT, a threshold of 50% or

more of the maximum pixel value on the SPECT image was

chosen. To accurately represent the entire tumor, SPECT/

CT was also employed to delineate the tumor ROI. The

tumor volume and radioactivity counts were generated

using PMOD software. The amount of radioactivity in each

tumor was calculated according to the above-mentioned

standard curve (see Figure S1, online version only). The

tumor uptake of 99mTc-3P-RGD2 was expressed as a

percentage of the injected dose (%ID) and a percentage of

the injected dose per unit volume (%ID/cm3) and was

compared to the data from biodistribution. Muscle was

used as the background. The ROI (< 0.01 cm3) was drawn

over the contralateral forelimb. The tumor to muscle (T/M)

ratio was calculated on the basis of the %ID/cm3 uptake

values of 99mTc-3P-RGD2 in the tumor and muscle.

Hematoxylin and Eosin Staining

Histologic analysis was performed by hematoxylin-eosin

staining of the xenografted glioma tissues harvested from

the mice 1 day after the last SPECT/CT study. The tumor

tissues were fixed in 10% formalin and then embedded in

paraffin. After being deparaffinized and rehydrated through

graded alcohols, tumor tissue sections were stained with

hematoxylin and eosin to study their morphologic char-

acteristics under a light microscope. The ImageScope

Viewer (Aperio, Vista, CA) was used to visualize the

whole-slide digital scans and capture images.

Immunohistochemistry

The glioma tissues were cut into 5 mm slices. After drying

thoroughly, they were fixed with ice-cold acetone for 10
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minutes, dried in the air for 20 minutes at room

temperature, blocked with 10% goat serum for 30 minutes,

and incubated with the hamster anti–integrin c3 antibody

(1:100; BD Biosciences, San Jose, CA) and rat anti-CD31

antibody (1:100, BD Biosciences) for 1 hour at room

temperature. After incubating with the Cy3-conjugated

goat antihamster and fluorescein isothiocyanate (FITC)-

conjugated goat antirat secondary antibodies (1:100;

Jackson ImmunoResearch Inc., West Grove, PA) and

washing with phosphate-buffered saline (PBS), the fluor-

escence was visualized with an Olympic BX51 fluorescence

microscope (Olympus America Inc., Center Valley, PA).

Statistical Analysis

All data were expressed as the mean 6 the standard

deviation. Statistical analysis was performed by one-way

analysis of variance (ANOVA) followed by the Newman-

Keuls test for multiple comparisons. The level of

significance was set at p , .05. GraphPad Prism 5

(GraphPad Software Inc., La Jolla, CA) was used for linear

and nonlinear regression analysis.

Results

Imaging Gliomas

Figure 1 shows the 3D and transverse views of the SPECT/

CT image of a glioma-bearing mouse, along with

microscopic images of the glioma tissue labeled with

anti–integrin b3 (red) and anti-CD31 (green) antibodies.

The tumor was visualized by SPECT/CT with excellent

contrast (see Figure 1: T/M ratio 5 12:1). The tumor

uptake was < 8.5% ID/cm3 from SPECT/CT quantifica-

tion. The high tumor uptake was likely caused by high

avb3 expression in gliomas (see Figure 1, bottom). 99mTc-

3P-RGD2 SPECT/CT is an excellent tool for imaging

gliomas in small animals.

Monitoring Glioma Growth

Figure 2A illustrates the 3D views of representative SPECT/

CT images of glioma-bearing mice (n 5 10). These images

were obtained at 5, 7, 14, 21, 28, and 35 days after

inoculation of U87MG cells to explore the capability of
99mTc-3P-RGD2 SPECT/CT to monitor the changes in

both tumor volume and avb3 levels during glioma growth.

Given that caliper is the standard tool to measure tumor

volumes in experimental tumor-bearing animals, we

compared the volumes obtained from SPECT/CT and

caliper. In general, the growth rate of gliomas was slow

over the first 3 weeks, but the tumor volume increased

rapidly over the next 2 weeks. When tumors were in the

range of 0.1 to 1.0 cm3, there were no significant

differences in the volumes from SPECT/CT and caliper

(Figure 2B). However, the tumor volumes from SPECT/

CT were higher than those from caliper for larger tumors

(. 1.0 cm3). We were surprised that small tumors could

be readily detected by the U-SPECT-II/CT scanner, with

excellent contrast (T/M ratios 3–5), only 5 days after

inoculation of U87MG cells. At this time point, the tumor

size was 0.0005 to 0.002 cm3 (< 1 mm in diameter), which

was difficult to accurately measure with caliper. Given that

these tumors have little avb3 expression on the tumor

vasculature, their uptake of 99mTc-3P-RGD2 was low

(2–5 %ID/cm3). Between weeks 2 and 3, the tumor size

was 0.15 to 0.35 cm3, and the distribution of 99mTc-3P-

RGD2 was uniform. By week 4, tumors were . 0.4 cm3;

the distribution heterogeneity of 99mTc-3P-RGD2 became

obvious due to intratumoral necrosis (see Figure 2A). At

week 5, there was extensive necrosis in most tumors, as

illustrated by SPECT/CT (Figure 2C) and histologic

analysis (Figure 2D). The tumor/necrosis (T/N) ratios

were calculated by circling an area of necrotic region with

the lowest radioactivity accumulation and an equally sized

area with high (T/N 5 15), moderate (T/N 5 6), or low

(T/N 5 2) radioactivity accumulation. These data clearly

showed the distribution heterogeneity of 99mTc-3P-RGD2

in three different regions of that specific tumor slice (see

Figure 2C).

Figure 1. Top: The three-dimensional and transverse views of
representative SPECT/CT images of an athymic nude mouse with
U87MG human glioma xenografts (< 0.13 cm3). Bottom:
Representative image (3200 original magnification) of the glioma
slice stained with anti–integrin b3 (red) or anti-CD31 (green) antibody.
Yellow color (red integrin b3 staining merged with green CD31
staining) indicates the presence of avb3 on tumor neovasculature.
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Determination of Tumor Volume

Accurate determination of tumor volume is important for

calculation of the tumor uptake of 99mTc-3P-RGD2.

Figure 3 illustrates the tumor ROI delineation on CT

and SPECT/CT images for small tumors without obvious

necrosis (see Figure 3A) and large tumors with significant

necrosis (see Figure 3B). Given that CT is a standard tool

to determine the tumor size in clinics, we compared the

tumor volumes measured by both CT and SPECT/CT (see

Figure 3C). When the tumor size was in the range of 0.001

to 0.01 cm3, the CT quantification overestimated the

tumor volume due to inadequate contrast. However, the

same tumor could be easily visualized, and the boundary

between tumor and normal tissues could be clearly

delineated by SPECT or SPECT/CT. For the tumors in

the range of 0.01 to 2.5 cm3, the volumes obtained from

CT were correlated well with those from SPECT/CT (see

Figure 3C). Thus, 99mTc-3P-RGD2 SPECT/CT is accurate

and might be better than CT only for measuring the tumor

volume changes during glioma growth and possibly under

treatment in small animals.

Determination of Tumor Uptake

To validate the U-SPECT-II/CT scanner as a tool for

quantification of tumor uptake (%ID and %ID/cm3) of
99mTc-3P-RGD2 in small animals, we also performed a

biodistribution study using glioma-bearing mice with the

tumor size of 0.01 to 1.7 g and compared the tumor uptake

values of 99mTc-3P-RGD2 to those from SPECT/CT

images. Figure 4 illustrates the relationship between the

tumor size and the tumor uptake obtained from both

SPECT/CT images (see Figure 4A, %/ID for the total

radioactivity accumulation, and Figure 4B, %ID/cm3 for

the radioactivity density) and the biodistribution (see

Figure 4C, %/ID, and Figure 4D, %ID/g). It was quite clear

that the tumor uptake values of 99mTc-3P-RGD2 from

SPECT/CT were almost identical to those obtained from

the ex vivo biodistribution. Therefore, the U-SPECT-II/CT

scanner is useful for accurate quantification of the tumor

uptake of 99mTc-3P-RGD2.

Tumor Uptake Changes during Glioma Growth

As illustrated in Figure 4, both %ID (total radioactivity

accumulation) and %ID/cm3 (radioactivity density) tumor

uptake of 99mTc-3P-RGD2 were relatively low (2–5 %ID/cm3)

when the tumor was , 0.01 cm3 during the first week.

Between weeks 2 and 3 after tumor cell inoculation, the

tumor size was 0.15 to 0.35 cm3, and there was a linear

relationship between the tumor size and %ID glioma

uptake of 99mTc-3P-RGD2, as indicated by the red lines (see

Figure 4A, R2 5 0.8954, and Figure 4C, R2 5 0.8929).

During this time period, both %ID/g and %ID/cm3 tumor

uptake of 99mTc-3P-RGD2 peaked (see Figure 4, B and D).

After week 3, the tumor necrosis started to appear and

Figure 2. A, The three-dimensional
and transverse views of representative
SPECT/CT images for an athymic
nude mouse bearing U87MG glioma
xenografts. These SPECT/CT images
were obtained at 5, 7, 14, 21, 28, and
35 days after inoculation of 5 3 106

U87MG cells. B, Comparison of the
tumor volumes determined by
SPECT/CT and caliper (*p , .05). C,
The expanded sagittal view of a
SPECT image to illustrate the presence
of tumor necrosis and the tumor/
necrosis (T/N) ratios to show the
distribution heterogeneity of 99mTc-
3P-RGD2 in three different regions of
that specific tumor slice. T/N ratios
were calculated by circling an area of
necrotic region with the lowest radio-
activity accumulation and an equally
sized area with high (T/N 5 15),
moderate (T/N 5 6), and low (T/N
5 2) radioactivity accumulation.
D, Histologic slice of tumor tissue from
the same animal to further confirm the
presence of tumor necrosis.
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became more significant at week 4 (see Figure 4, C and

D). Between weeks 4 and 5, the tumor size was . 0.4 cm3.

The %ID/g tumor uptake of 99mTc-3P-RGD2 decreased

even though its %ID tumor uptake increased (see Figure

4, A and C). The radioactivity heterogeneity was obvious.

The overall relationship between tumor volume and %ID

of 99mTc-3P-RGD2 was modeled as a quadratic poly-

nomial, with R2 being . .95. Assuming that the reduced

uptake of 99mTc-3P-RGD2 in large tumors is mainly

caused by necrosis, the percentage of tumor necrosis

could be calculated using the following equation: %

necrosis 5 (RAmax 2 RA)/RAmax, where RAmax is the

maximum radioactivity density (%ID/cm3 or %ID/g)

from Figure 4, B or D, and RA is the tumor uptake from

SPECT/CT (%ID/cm3) or biodistribution (%ID/g). The

percent necrosis increased as tumors became larger and

was . 60% when they were . 1.5 cm3. The overall

relationship between the percent necrosis and the tumor

Figure 3. Illustration of the tumor
region of interest delineation using CT
and SPECT/CT for small tumors
without necrosis (A) and large tumors
with significant necrosis (B). When
tumors were in the range of 0.001 to
0.01 cm3, CT quantification overesti-
mated the tumor volume due to
insufficient contrast. When the tumor
size was 0.01 to 2.5 cm3, the volumes
measured by SPECT/CT correlated
well with those obtained from CT in
a linear fashion (C: R2 5 .99971).

Figure 4. Top: Relationship between
tumor size (cm3) and tumor uptake
(A: %/ID for total radioactivity; B:
%ID/cm3 for radioactivity density)
determined by SPECT/CT. The rela-
tionship between tumor size and %ID
of 99mTc-3P-RGD2 was modeled as a
quadratic polynomial fitting curve,
with R2 being .9521. Red lines repre-
sent the linear relationship (R2 5

.8954 for SPECT/CT data and .8929
for biodistribution data) between
tumor size and %ID of 99mTc-3P-
RGD2 for tumors , 1.0 g or cm3.
Middle: Relationship between tumor
size and tumor uptake (C: %/ID; D:
%ID/g) from biodistribution. Bottom:
Relationship between tumor size and
percent tumor necrosis on the basis of
SPECT/CT (E) and biodistribution
(F).
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size was a quadratic polynomial, with R2 being .7171 for

SPECT/CT data (see Figure 4E) and .6485 for biodis-

tribution data (see Figure 4F).

Integrin avb3 Expression Changes during Glioma
Growth

Immunofluorescence staining was performed to examine

the avb3 and CD31 expression levels in tumor tissues of

different sizes. CD31 was used as the biomarker for the

blood vessels. Figure 5 shows the representative micro-

scopic fluorescent images for tumor slices from the

xenografted primary glioma tumors (0.01, 0.20, 0.38,

0.50, and 1.48 g). Yellow color in overlay images indicates

the presence of the avb3 on new blood vessels. We found

that integrin avb3, as illustrated in the merged image in

Figure 5, was mainly expressed on glioma cells (red), with

little on neovasculature (yellow) in very small tumors (,

0.01 g). In contrast, the avb3 expression was mainly on

new blood vessels for tumors in the range of 0.2 to 0.5 g

with the increased blood vessel density. As tumors became

bigger, the overall blood vessel density decreased in viable

regions of the tumor. However, the total tumor avb3

expression level was increased in the tumors of 0.50 to

2.00 g due to more contributions from a large number of

glioma cells. In the necrotic regions, there was very little

expression of both avb3 and CD31 (Figure S2, available in

the online version only).

Figure 5. Representative microscopic images for the frozen tumor
slices from different sizes of xenografted glioma tumors (0.01, 0.20,
0.38, 0.50, and 1.48 g) after immunohistochemical staining for integrin
b3 and CD31. The CD31 was used to label the tumor endothelial cells
on blood vessels. The integrin b3 was visualized with Cy3 (red), and
CD31 was visualized with fluorescein isothiocyanate (green) under an
Olympus fluorescence system. Original magnification 3200.

Figure S1. Relationship between the radioactivity counts from the
SPECT/CT fusion images and those from the c-counter. Obviously,
there was a linear relationship, with R2 being .9997. The conversion
formula was y 5 1.0885x + 0.0618, where y represents the radioactivity
(MBq) from the c-counter and x is the radioactivity (U 3 10–7) from
SPECT/CT.

Figure S2. A, Histologic slice of the tumor tissue with the necrotic
region. B, Representative microscopic images selected from the
necrotic or viable region of the glioma tissue after immunohisto-
chemical staining for integrin b3 and CD31. CD31 was used to label
the tumor endothelial cells that line the blood vessels. Integrin b3 was
visualized with Cy3 (red), whereas CD31 was visualized with
fluorescein isothiocyanate (green) under an Olympus fluorescence
system. The yellow color on overlay images indicates the b3 expression
on blood vessels. Original magnification 3200. It was quite clear that
there was no b3 expression in the necrotic region of the glioma tissue.
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Discussion

Increased tumor cell proliferation, rapid invasion into the

surrounding brain tissue, and intense microvascular

angiogenesis are biologic hallmarks of malignant glio-

mas.44 A high degree of angiogenesis is responsible for

rapid tumor growth and diffuse infiltration in GBM,

leading to a higher grade and a poor survival rate for GBM

cancer patients. Because of higher avb3 expression in

human primary GBMs than that in low-grade gliomas,45

[18F]Galacto-RGD has been used to image gliomas in

patients.36 In this study, we found that SPECT/CT is able

to detect avb3-positve glioma tumors with excellent

contrast (see Figure 1) using 99mTc-3P-RGD2 as the

radiotracer. The detection limit for the U-SPECT-II/CT

scanner is 0.5 mm3 (< 1 mm in diameter) using 99mTc-3P-

RGD2 as the radiotracer. 99mTc-3P-RGD2 SPECT/CT is

better than CT and caliper for delineation of small tumors

(, 0.01 cm3). When the tumor size is 0.01 to 2.5 cm3, the

volumes from SPECT/CT are correlated well with those

from CT (see Figure 3C).

In our previous report,37 we found that the U87MG

tumor uptake of 99mTc-3P-RGD2 had a linear correlation

with tumor size (R2 5 .9164). In this study, we found that

the overall relationship between the tumor volume and

%ID of 99mTc-3P-RGD2 was better described as a

quadratic polynomial, with R2 being .9521. When the

tumors are in their rapid growing stage (10–500 mm3), the

microvessel and avb3 density is high. The %ID of 99mTc-

3P-RGD2 was correlated with tumor size in a linear

fashion (R2 5 .8954 for SPECT/CT data and .8929 for

biodistribution data). When tumors grow beyond

1,000 mm3, the %ID uptake of 99mTc-3P-RGD2 showed

a significant deviation from the linear relationship. The

%ID uptake reduction was . 60%, probably due to the

maturity of blood vessels, tumor necrosis, and larger

interstitial space.46 Were there no tumor necrosis, we

would have observed a linear relationship. Therefore, this

relationship is best described as a quadratic polynomial.

Antiangiogenesis drugs are cytostatic and do not

necessarily cause large reductions in tumor volume on a

short timescale.47 There is a continuing need for accurate

methods to monitor therapy response at the molecular

level. Dynamic contrast–enhanced magnetic resonance

imaging (MRI) and CT were used to measure tumor

perfusion properties,48,49 but they cannot reflect changes at

the molecular level. Optical imaging methods with

bioluminescence or fluorescence are able to monitor

changes at the molecular level,50–52 but they have

significant limitations due to their low spatial resolution

and lack of capability for quantification. As illustrated in

Figure 4, the tumor uptake of 99mTc-3P-RGD2 from

SPECT/CT is almost the same as that from biodistribution.

The tumor uptake from SPECT/CT can accurately reflect

the tumor avb3 expression level. 99mTc-3P-RGD2 is an

excellent radiotracer for monitoring the avb3 level changes

during glioma growth.

Tumor-bearing small-animal models have been widely

used to evaluate the antitumor activity of anti-avb3 and

antiangiogenic agents, such as cilengitide,26,27 before more

extensive preclinical and clinical studies. One of the key

questions is what the optimal time is to start the therapy.

On the basis of this study, the best time window to start

the anti-avb3 and antiangiogenic therapy is when tumors

are in the range of 0.15 to 0.40 cm3. During this time

period, the tumors show a high level of avb3 expression, as

indicated by the peak %ID/cm3 uptake of 99mTc-3P-RGD2

(see Figure 4), and the avb3 is mainly expressed on the

tumor vasculature (see Figure 5). If the tumor has a high

level of avb3 expression, the anti-avb3 and antiangiogenesis

therapy would more likely be effective. If the tumor has

little avb3 expression, the anti-avb3 and antiangiogenesis

therapy would not be effective. From this point of view,
99mTc-3P-RGD2 SPECT/CT can be used to select animals

for therapy studies and might become a screening tool for

the selection of appropriate cancer patients who will

benefit most from anti-avb3 and antiangiogenic therapy

with agents such as cilengitide.

Necrosis is an important diagnostic feature in GBM

and has been used to distinguish lower-grade astrocytomas

and GBM, and the degree of necrosis was found to

inversely correlate with the survival of glioma patients.53

Herein we showed that 99mTc-3P-RGD2 SPECT/CT is able

to delineate necrotic regions in gliomas (a high level of

avb3 expression). Necrosis can be detected as early as 3

weeks after inoculation of U87MG cells, as illustrated by

the low or no uptake of 99mTc-3P-RGD2 in necrotic areas

(see Figure 4, A and C) due to a lack of avb3 expression

(see Figure S2, available online only). Noninvasive imaging

and delineation of the spontaneous and therapy-induced

tumor necrosis will have a significant impact on the

management of GBM cancer patients.53

There are several factors contributing to the reduced

tumor uptake of 99mTc-3P-RGD2 (see Figure 4). These

include tumor necrosis, the maturity of blood vessels, and

the larger interstitial space in larger tumors (. 1,000 mm3).

Given that tumor necrosis is likely the main contributor for

the reduced tumor uptake of 99mTc-3P-RGD2, the percent

necrosis can be estimated on the basis of the maximum

glioma uptake (%ID/g or %ID/cm3) and the experimental

46 Shao et al



tumor uptake (%ID/g or %ID/cm3). It must be noted that

each tumor slice in the SPECT/CT image is different and

each area in that specific slice is also different with respect to

the radiotracer tumor uptake (see Figure 2C) and avb3

expression levels (see Figure S2, available online only).

There are also many necrotic regions in each tumor even if it

is from the same animal (see Figure 2A).

Conclusion

The results from this study clearly show that 99mTc-3P-

RGD2 SPECT/CT is useful for early glioma detection and

is better than both CT and caliper for measuring the

volumes of small tumors (, 0.01 cm3). 99mTc-3P-RGD2 is

an excellent radiotracer for monitoring avb3 expression

and tumor necrosis during glioma growth. 99mTc-3P-

RGD2 SPECT/CT has the potential to become a screening

tool for patient selection before anti-avb3 and antiangio-

genesis therapy.
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