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A B S T R A C T   

Purpose: Micron-scale computed tomography (micro-CT) imaging is a ubiquitous, cost-effective, and non-invasive 
three-dimensional imaging modality. We review recent developments and applications of micro-CT for pre-
clinical research. 
Methods: Based on a comprehensive review of recent micro-CT literature, we summarize features of state-of-the- 
art hardware and ongoing challenges and promising research directions in the field. 
Results: Representative features of commercially available micro-CT scanners and some new applications for both 
in vivo and ex vivo imaging are described. New advancements include spectral scanning using dual-energy micro- 
CT based on energy-integrating detectors or a new generation of photon-counting x-ray detectors (PCDs). Beyond 
two-material discrimination, PCDs enable quantitative differentiation of intrinsic tissues from one or more 
extrinsic contrast agents. When these extrinsic contrast agents are incorporated into a nanoparticle platform (e.g. 
liposomes), novel micro-CT imaging applications are possible such as combined therapy and diagnostic imaging 
in the field of cancer theranostics. Another major area of research in micro-CT is in x-ray phase contrast (XPC) 
imaging. XPC imaging opens CT to many new imaging applications because phase changes are more sensitive to 
density variations in soft tissues than standard absorption imaging. We further review the impact of deep 
learning on micro-CT. We feature several recent works which have successfully applied deep learning to micro- 
CT data, and we outline several challenges specific to micro-CT. 
Conclusions: All of these advancements establish micro-CT imaging at the forefront of preclinical research, able to 
provide anatomical, functional, and even molecular information while serving as a testbench for translational 
research.   

1. Introduction 

Micro-computed tomography, also known as micro-CT, is the pre-
clinical analogue of clinical CT, providing higher spatial resolution 
(voxel size <= 100 µm) for imaging small animal models of disease. 
Several review papers have presented the physical principles and ap-
plications of micro-CT imaging [1,2]. The growing interest in small 
animal models and the development of new x-ray detectors stimulated 
considerable development of dedicated small animal scanners in the 
1990s. Now, micro-CT systems have become highly sophisticated and 
are an essential part of preclinical imaging centers in both academia and 
industry. 

There are several major differences between micro-CT and clinical 
CT scanners. To accommodate higher spatial resolution requirements, 
micro-CT scanners use micro-focus x-ray sources. Most commonly, these 
sources utilize a fixed tungsten anode and operate at lower voltages 

(20–100 kVp) and much lower anode currents (50–1000 μA) than clin-
ical scanners. Furthermore, unlike clinical CT scanners with curved 
detector arrays, micro-CT systems generally utilize flat-panel detectors 
with small pixel sizes (≤150 μm2) and a cone-beam scanning geometry. 
This configuration is shared with some C-arm CT systems used in 
interventional radiology. Depending on the application, tolerances on 
radiation dose and acquisition time may be more relaxed for micro-CT 
scanners to manage noise in high-resolution scans. 

In this review paper, we start with state-of-the-art, commercially 
available micro-CT scanners and present a few new applications for both 
in vivo and ex vivo imaging. Next, we summarize new developments 
associated with dual energy and photon counting micro-CT which 
enable quantitative differentiation of tissues and nanoparticle contrast 
agents. These nanoparticles have numerous applications in the bur-
geoning field of cancer theranostics. We also describe micro-CT research 
in phase contrast imaging, which promises to make the modality more 
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sensitive to density changes in soft tissues. Finally, we review the impact 
deep learning has had on CT imaging and predict its future applications. 
Deep learning is of significant interest within the CT community, and 
has the potential to solve several challenging problems in preclinical 
micro-CT; therefore, we dedicate roughly one-third of this review paper 
to deep learning topics. 

2. State-of-the-art, commercial micro-CT scanners 

In Table 1 we summarize system specifications for commercial 
micro-CT scanners from different manufacturers. All of these micro-CT 
systems use high precision movements during acquisitions and have 
sensitive electronics. They are self-shielded cabinet systems and have 
multiple layers of safety interlocks and emergency stops to prevent 
accidental radiation exposure. The user interface of such scanners can be 
controlled from the computer screen and from an embedded 
touchscreen. Commercial micro-CT scanners generally include software 
needed to collect, reconstruct, and analyze data and utilize GPU-based 
reconstruction code for fast performance. They can also include soft-
ware for good laboratory practice which, when activated, provides 
necessary data protection [3]. Furthermore, the imaging data can be 
saved in various formats (BMP, JPG, TIFF) or exported as DICOM files. 

We group commercial micro-CT scanners into four categories 
(Table 1): 1) ex vivo systems, 2) in vivo systems, 3) in vivo hybrid systems 
(multi-modality), and 4) photon counting systems. While ex vivo micro- 
CT is not a primary focus of this review paper, the Bruker SkyScan 1272 
and the Scanco µCT 40 are examples of high-resolution, 3D, ex vivo 
scanners which operate in a rotating specimen geometry. Exemplary 
features of the SkyScan 1272 include its “Genius-Mode” which auto-
mates the process of selecting scan parameters such as the magnifica-
tion, energy, filters, exposure time, and background corrections. The 
spatial resolution delivered in scanning biological specimens can be as 
high as 0.4 µm; however, high-resolution scans may take several hours. 
Radiation dose is generally not a concern for ex vivo scanning. The 
scanner can optionally be equipped with an external 16-position sample 
changer to queue multiple scans for increased throughput. 

By contrast, commercial in vivo micro-CT systems have a movable 
animal bed surrounded by a rotating gantry. For acquisition, the anes-
thetized animal is placed on the bed and is inserted into the bore of the 
gantry. Some of the in vivo micro-CT scanners are sold as standalone 
systems (e.g. PerkinElmer Quantum GX2) and can be quite versatile, 
having several available physical magnifications and allowing high- 
resolution (<10 μm) ex vivo scanning. Such scanners can image mice 
with a single scan or larger animals such as rats and guinea pigs by 
extending the scan field of view. Scanning times vary depending on 
imaging requirements and can be on the order of seconds for lower- 
resolution acquisitions or longer when high spatial resolution is 
required. Some in vivo scanners use integrated cradles or exchangeable 
animal cassettes that allow co-registration with data acquired with other 
modalities (e.g. fluorescence molecular tomography, FMT; micro-PET; 
micro-SPECT). These systems from Bruker, PerkinElmer, MiLabs, or 
Inviscan come equipped with physiological monitoring and also provide 
prospective or retrospective gating for cardiac and respiratory imaging. 
Gating enables cardiopulmonary studies to analyze functional metrics 
such as cardiac output and ejection fraction through 4D post-processing 
software. These scanners are also designed and optimized for lower- 
resolution longitudinal imaging at low radiation dose (as low as 5–6 
mGy), allowing researchers to follow and characterize disease progres-
sion at multiple imaging time points. This is extremely important in 
cancer studies where the radiation associated with imaging may other-
wise apply a therapeutic dose to tumors. 

The third category of micro-CT systems combine CT scanning with 
PET (or SPECT), where CT provides anatomical context and enables 
attenuation correction during reconstruction. In comparison to stand-
alone micro-CT systems, hybrid scanners may provide lower resolution 
(e.g. PerkinElmer G8 PET / CT has 200 μm resolution) or lack gating 

capabilities. However, there are also exceptions. For example, the 
Bruker Si78 PET/CT has a 50 μm resolution and also includes gated 
micro-CT capabilities. 

Notably, most micro-CT systems employ flat-surface, 2D x-ray de-
tectors (i.e. flat-panel detectors) leading to a cone-beam scanning ge-
ometry. Advances in complementary metal oxide semiconductor 
(CMOS) technology led to the production of these large area detectors. 
CMOS detectors also feature high frame rates and relatively low cost, 
making them ideal for in vivo, small animal micro-CT imaging. As an 
alternative, some commercial systems use cooled, charge-coupled de-
vice (CCD) detectors, for example, the Bruker SkyScan 2214 nano-CT 
scanner. Cooled CCD detectors are preferred in applications involving 
low x-ray fluences because they have lower levels of dark noise than 
CMOS detectors. 

With the exception of the last scanner, all systems in Table 1 use 
energy integrating detectors which are affected by limited contrast ca-
pabilities. Our last selected commercial scanner is based on an energy 
resolving detector. The MARS preclinical CT scanner (MARS Bio-
imaging, Ltd.; Christchurch, New Zealand) uses a photon counting de-
tector (PCD) based on the Medipix3 chip developed at CERN (Geneva, 
Switzerland) [4]. This PCD has 8 energy thresholds and a charge sum-
ming mode which can improve spectral performance. The scanner has 
physiological support and monitoring capabilities for in vivo studies but 
does not provide gating. Nevertheless, as detailed in the Spectral micro- 
CT section of this review, PCD-based scanners provide improved mate-
rial discrimination [5 6] and allow the use of nanoparticle contrast 
agents that can be functionalized for molecular x-ray imaging [7]. 

3. Commercially available contrast agents for micro-CT 

Due to a lack of inherent contrast for soft-tissue imaging, the ma-
jority of micro-CT scans make use of high atomic weight contrast agents. 
In Table 2 we present examples of commercially available contrast 
agents for micro-CT. These include low molecular weight iodinated 
contrast agents in clinical use, such as Isovue-370, and nanoparticle- 
based contrast agents. For in vivo small-animal imaging, the use of 
clinical contrast agents is particularly difficult. Small animals have much 
higher renal clearance rates than humans, so injected contrast agents are 
rapidly excreted. To overcome the rapid clearance of traditional contrast 
agents, blood pool contrast agents have been developed, which exhibit 
prolonged blood residence time and stable enhancement for minutes to 
hours. Typically, these contrast agents are based on iodine, gold, or 
barium because of their high x-ray attenuation, biocompatibility, rele-
vant biochemistry, cost, and/or clinical relevance. Nanoparticle contrast 
agents for micro-CT have also been developed using other metals, 
including silver, gadolinium, bismuth, ytterbium, tantalum, and 
thorium [8]. 

4. Applications of modern micro-CT imaging 

Next, we present some recent applications of micro-CT for in vivo and 
ex vivo imaging in small animals. Supplemental data acquisition and 
reconstruction parameters for the figures presented in this and future 
sections are included in Table 3. refs: [10-16] 

CT is one of the principal modalities used for diagnosing lung pa-
thology and has become increasingly important for diagnosing virus- 
induced lung infections during the COVID-19 pandemic. In trans-
lational efforts, micro-CT has been used for preclinical research toward 
finding an efficient vaccine and antiviral drugs against COVID-19. In 
particular, we give the example of a study in Syrian hamsters as a small 
animal model for SARS-CoV-2 infection and treatment development 
[17]. The authors examined the progression of lung inflammation 
caused by SARS-CoV-2 infection and the recovery processes. The micro- 
CT images showed severe lung abnormalities in all infected animals 
(Fig. 1). The lung abnormalities were first detected at day 2 post 
infection and then progressed to more severe lung consolidation at 8 
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Table 1 
Specifications of current commercial micro-CT scanners. Notes: Only representative ex vivo scanners for biological samples are included in this table. Additional ex vivo, 
industrial, and nano-CT scanners are available from manufacturers like Nikon, Zeiss, Werth, Yxlon, Rigaku, and Bruker. Discontinued product lines from GE and 
Siemens are excluded from this table.  

Type Scanner 
Manufacturer 
/Model 

Diameter 
FOV (mm) 

Length 
(mm) 

Spatial Res. kVp Scanning Time Gating Other Characteristics 

Ex Vivo 
Systems  Bruker  

SkyScan 1272   

75 mm 70 mm Max. 0.4 µm 20 – 100 kVp Mins to hrs 
depending on 
resolution 

Not needed for ex 
vivo imaging 

- 16-position sample changer to 
increase throughput 
- Automatic selection of scan 
parameters 

Scanco 
µCT 40  

36.9 mm 80 mm 3–72 µm 
(pixel size) 

30–70 kVp Mins to hrs 
depending on 
resolution 

Not needed for ex 
vivo imaging 

- Optional sample changer that 
accommodates up to 10 sample 
holders 

In Vivo 
Systems  Bruker 

SkyScan 1278 

80 mm 200 
mm 

50 µm 
nominal res. 

20–65 kVp -Continuous 
rotation or 
step-and-shoot 
mode 
-Scanning time 
down to 7.2 sec 

- Prospective and 
retrospective 
gating, image-based 
intrinsic gating 
- Complete software 
solution for cardiac 
function analysis in 
4D 

- GPU-accelerated reconstruction 
- 2D/3D morphological analysis 
and visualization 
- Exchangeable animal cassettes 
that can be used in all Bruker in- 
vivo imaging instruments. 
- Low-dose acquisitions down to 6 
mGy 
- 4-position automatic filter changer  

Bruker 
SkyScan 1276 

80 mm 300 
mm 

Max. 2.8 µm 20–100 kVp Scanning time 
down to 3.9 sec 

Prospective and 
retrospective, time 
and image based 
intrinsic gating 

- In vivo micro-CT scanner with ex 
vivo imaging capabilities 
- Circular and helical (spiral) 
scanning trajectory 
- s/w for cardiac image analysis  

PerkinElmer 
Quantum GX2   

FOVs: 18, 
36, 72, and 
86 mm  

240 
mm 

Preset high 
res. mode: 
2.3 μm voxel 
size 

Max: 90 kVp Preset high 
speed mode: 
3.9 sec 

- Intrinsic 
retrospective gating 
- Dual phase 
respiratory and 
cardiac gating 

- Multi-modal co-registration (from 
IVIS Spectrum or FMT) with micro- 
CT imaging data. 
- Multispecies imaging capabilities 
(zebrafish, mouse, rat, guinea pig, 
rabbit)  

MiLabs 
U-CT 

Up to 130 
mm 

Up to 
712 
mm 

Max 2.4 μm 
voxel size 

65 kVp (80 kVp 
optional) 

Down to 5 sec 
for total body 
mouse 

- Sensor free 
respiratory and 
cardiac gating for 
up to four mice 
simultaneously 
- Optional: sensor 
based respiratory 
and cardiac gating 

- Radiation dose: < 2 mGy 
- Circular and helical scanning 
- Dual energy CT 
- X-ray fluoroscopy 
- Imaging from small samples up to 
5 kg rabbits 
- Capability to image in an over- or 
under-pressure cell for 
immunocompromised or infected 
animals from mice up to rabbits 
- Upgradable with PET, SPECT, and 
3D CT-guided optical imaging in 
any combination 

Inviscan 
IRIS and IRIS- 
XL 

> 90 mm 120 
mm 

< 30 μm  Scan time: <
7.3 s (ultra-fast 
mode), 
20 s (speed 
mode), 1 min 
(high 
resolution 
scan) 

- Dynamic 4D 
acquisition 
- Software based 
respiratory and 
cardiac gating 

- Low dose: < 6.5 mGy 
- Either standalone of combined 
with micro- PET 

Molecubes, 
X-Cube   

35 mm 63 mm 50 μm  <1 min fastest 
scan 

Gating is available - Iterative reconstruction 
techniques 
- Multimodal small animal bed 
allows for easy and modular 
multimodal imaging with SPECT 
and PET 

In Vivo 
Hybrid 
Systems 
(multi- 
modality) 

Mediso 
nanoScan 

100 mm 120 
mm 

30 μm Up to 80 W  Not available - Multiple animal imaging: up to 
4x60 g mice 2x500 g rats 
- Mainly combined with PET or 
SPECT 
- Low dose down to 1 mSv for whole 
body scan 

Sofie 
Gnext PET-CT 

104 mm 120 
mm 

50 μm 25–80 kVp 1 min, fastest 
scan 

Not available - Combined with PET 
- Single and multi-mouse imaging, 
rat and small non-human primate 
imaging 

PerkinElmer 
G8 PET / CT 

100 mm 50 mm 200 μm 59 kVp sub-minute CT 
scan 

Not available - Combined with PET 
- Fully-integrated animal 
management system and 3-clicks- 

(continued on next page) 
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days post-infection. High-dose infected animals had more severe lung 
abnormalities compared to low dose infections. 

Micro-CT can deliver valuable anatomical and functional informa-
tion in cardiac studies in small animals. High temporal and spatial res-
olution and relatively short scanning times allow for high-throughput 
studies. An increasing number of research groups have demonstrated the 
use of micro-CT for cardiac morphology and global ventricular systolic 
indices, such as stroke volume, ejection fraction, and cardiac output [18- 
22]. Cardiac micro-CT has also been used to assess functional parame-
ters of systolic emptying or diastolic filling in an experimental model of 
pulmonary arterial hypertension in rats [23]. Recently, using a custom- 
built system integrated into a clinical CT gantry, even murine coronary 
arteries have been imaged using phase correlated reconstructions 
(Fig. 2) [24]. The authors show that with a radiation dose of 1 Gy the left 
coronary artery can be visualized and all major branches can be iden-
tified. This is an important achievement given the small size of the 
coronaries (<100 µm) and their continuous motion due to both the heart 
beating (up to 600 beats/min) and respiration (up to 230 breaths/min). 
However, the high radiation dose level is an issue which prevents lon-
gitudinal studies. We expect that future improvements in low-dose 
reconstruction will allow longitudinal imaging of the coronary arteries 
in mouse models. 

High resolution images provided by ex vivo micro-CT using staining 
or vascular casting promise to bridge the gap between in vivo small 
animal imaging and conventional histology or pathology. Staining 
methods for ex vivo micro-CT mostly use iodine or phosphotungstic acid 
[25], but other high atomic number compounds based on barium or lead 
can be used. In Fig. 3, we show examples of ex vivo micro-CT imaging 
using a commercial compound based on barium (BriteVu®; Scarlet Im-
aging, Murray, UT) to visualize mouse vasculature in the kidneys, the 
head, and the thorax. 

5. Spectral micro-CT 

While clearly remarkable, the applications of micro-CT previously 
described do not require novel x-ray technologies. We believe that the 
future of CT imaging is related to spectral imaging. Spectral CT takes 
advantage of the energy dependence of x-ray attenuation to quantita-
tively separate materials within the subject—e.g. separating extrinsic 
iodine or gold based contrast agents from bone and soft tissues. The most 
common form of spectral CT imaging, dual-energy (DE) CT, performs 
two separate scans of the same subject, each with a different acceler-
ating voltage of the x-ray tube (a different source “kVp”). Most current 
CT systems perform DE CT with energy-integrating x-ray detectors 
(EIDs) which record an output signal that is proportional to the detected 
x-ray photon flux, weighted by the x-ray energy and integrated across 
the entire x-ray energy spectrum. 

Using spectral CT data, material decomposition into basis material 
maps is possible both in the projection domain or post-reconstruction, in 
the image domain. For example, post-reconstruction decomposition 
[26] can be performed to create volumetric maps of photoelectric effect 
(PE) and Compton scattering (CS) basis functions [27] and other 
contrast materials (e.g. based on iodine, gadolinium, gold, barium). 
Under certain assumptions, such decompositions can be performed with 
DE micro-CT data acquired with EIDs [28-30]. However, DE-EID CT 
faces significant limitations: with only two EID measurements, gold- 
based nanoparticles in the spleen are not differentiable from calcium 
in bones (Fig. 4). 

A newly emerging CT detector technology, energy-discriminating or 
photon-counting x-ray detector (PCD) technology, can address this 
limitation. PCDs have several advantages over current EID technology. 
Unlike EIDs, PCDs count incoming x-ray photons and bin them based on 
their recorded energy, providing dual- and even multi-energy 

Table 1 (continued ) 

Type Scanner 
Manufacturer 
/Model 

Diameter 
FOV (mm) 

Length 
(mm) 

Spatial Res. kVp Scanning Time Gating Other Characteristics 

to-data workflow 
- Average dose: 50.1 mGy 

Bruker 
Albira Si 

70 mm 70 mm 90 μm with 
minimum 5 
μm voxel 

10 – 50 kVp minutes Not available - Combined with PET and/or SPECT 
- Dynamic 2D X-ray mode for 
fluoroscopic imaging 

Bruker 
Si78 PET/CT 

70 mm 200 
mm 

Max 50 μm 20–65 kVp 
maintenance- 
free X-ray 
source 

fastest total 
body scan: 7.2 
sec 

Gated PET and CT 
imaging for cardiac 
imaging or 
respiration 
triggering  

- Low dose scanning < 6 mGy 
- Radiation shielding: < 1 μSv/h at 
10 cm from surface 

Sedecal 
SuperArgus 
Compact PET/ 
CT 

100 mm 50 mm 50–100 μm  ~15 sec Available for PET - Combined with PET 
- 3 models available r – 100 mm 
bore for mouse, rats or marmosets 
up to 3 kg; R – 160 mm bore for 
multi-animal imaging, as well as 
rabbits up to 6 kg; or P – 260 mm 
bore for non-human primates, 
canine or porcine up to 10 kg. Each 
model can be configured with 2, 4, 
or 6 PET rings 

MRSolutions 
MRS*PET/CT 
80 

112 mm 80 mm Up to 18 μm 40–90 kVp minutes Not available - Uses MRS*PET CLIP-ON 
technology 
- Variable zoom 
- Dual Energy 
- Suitable for both in-vivo and ex- 
vivo applications 

Photon 
Counting 
Systems  

Mars 
Bioimaging 
Preclinical 
Spectral CT 
System 

100 mm 280 
mm 

30–100 μm 
(user 
selects) 

30–120 kVp 8 mins for 30 ×
15 mm volume 

Not available - Uses photon counting detector 
with 8 energy bins 
- Detector constructed from CZT- 
Medipix3RX detector modules with 
110-μm2 pixels 
- Charge summing mode improves 
spectral measurement accuracy 
- Radiation dose: 20–80 mGy  
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information with a single CT scan. Further benefits associated with PCD 
technology include reduced electronic noise, higher contrast-to-noise 
ratios, improved spatial resolution, and improved dose efficiencies 
[31]. Current PCDs have two to eight hardware energy thresholds (bins) 
per detector pixel, facilitating the separation of multiple extrinsic 
contrast agents based on different elements [32]. These elements have 
unique x-ray attenuation signatures (K-edges) which allow their sepa-
ration from intrinsic tissues with an optimal degree of specificity and 
sensitivity. 

The large-scale use of PCDs in both clinical and preclinical CT sys-
tems is limited by spectral distortions inherent in the photon detection 
process (charge sharing, pulse pile-up, and related physical effects) [33]. 
Even with proper spectral calibration of the detector, these sources of 
distortion degrade the fidelity of spectral measurements. Particularly, 
there are significant trade-offs between the size of PCD pixels and the 
energy resolution of PCD scans due to charge sharing between neigh-
boring detector pixels. Charge sharing occurs when incoming photons 
are recorded as two or more lower energy photon due to the division of 
signal between neighboring pixels. Since high spatial resolution is 
required for micro-CT imaging, using PCDs for preclinical imaging 
presents challenges. There are, however, hardware solutions to 
compensate for charge sharing which include anti-coincidence charge- 
summing circuitry [4]. Alternative software solutions for spectral 
correction are described in the Deep learning for micro-CT section of this 
review. 

There are also hybrid micro-CT systems that include a PCD and EID 
within the same system [12,34]. The Duke hybrid micro-CT configura-
tion enabled a direct comparison between PC and DE EID micro-CT in 
experiments using both phantoms and mice for anatomical and func-
tional imaging of tumors [26]. Fig. 5 illustrates this comparison. Mice 
with p53/MCA sarcoma tumors [35] were intravenously administered a 
liposomal gadolinium (Lip-Gd) contrast agent (0.4 mg Gd kg− 1 body 

weight) and imaged 3 h later with both DE-EID and PC micro-CT (Day 
0). 3 days later, the same animals were injected with liposomal iodine 
(Lip-I) (1.32 mg I kg− 1 body weight) and re-imaged. The PCD binned x- 
ray photons using 4 energy thresholds set to 25, 34, 50 and 60 keV. PC 
micro-CT decreased the overlap between spectral measurements 
allowing distinct separation of the two contrast materials from soft tis-
sue (gray) and bone (white). According to the Rose criterion applied to 
the experimental results, the detectability limits for I and Gd were 
approximately 2.5 mg/mL for both DE-EID and PC micro-CT, even 
though for PC micro-CT the radiation dose was 3.8 times lower and two 
additional basis materials were decomposed (PE, CS). Additionally, PC 
micro-CT provided lower background signal and better simultaneous 
visualization of tumor vasculature and intratumoral Gd compared to DE 
EID micro-CT decompositions. 

Successful PCD-based in vivo cardiac micro-CT imaging has been 
demonstrated in a study of APOE knockout mice [36]. Technically, this 
study is significant because it demonstrates successful navigation of the 
trade-offs between spatial, temporal, and spectral resolution required 
for micro-CT imaging of the mouse heart within reasonable radiation 
dose constraints (~190 mGy dose to image 10 cardiac phases with four 
PCD energy bins). Scientifically, this study is significant because APOE 
knockout mice represent a model of atherosclerosis, showing a marked 
increase in total plasma cholesterol and reliably developing athero-
sclerotic lesions when fed on a high-fat diet [37]. Fig. 6A illustrates the 
results of image-domain material decomposition of one of these cardiac 
data sets. Effective separation is seen between calcium in the bones and 
calcified plaques (green, PE map) and iodine in the vasculature of the 
lungs and heart (red). The 10-phase cardiac sequence also allows for 
cardiac function analysis (Fig. 6B). 

6. Developments in CT theranostics 

Many applications of preclinical micro-CT use nanoparticle (NP) 
contrast agents which are based on materials like iodine, barium, gad-
olinium, or gold. Low molecular weight contrast agents used for clinical 
imaging rapidly clear from the blood pool in mice, while NPs may 
remain in circulation for hours or days depending on their size and 
biochemistry. Liposomes (Lip), one of the most extensively studied NP 
platforms, encapsulating I or Gd have been used as contrast agents for 
blood-pool, cancer, and cardiovascular imaging applications [38-41]. 
Such NPs are also ideal for CT-based theranostics: they can serve both 
diagnostic imaging and therapy. Notably, Lip-I and Lip-Gd have similar 
size and biodistribution patterns to liposomal drugs such as Doxil 
(Janssen), and thus can serve well as imaging surrogates in drug delivery 
studies [42]. 

Alternatively, gold nanoparticles (AuNPs) are also used for both 
spectral micro-CT imaging and therapies. In addition to providing high 
contrast for x-ray imaging, AuNps can amplify the local effectiveness of 
radiation therapy (RT): they absorb therapeutic x-rays efficiently and 
then release that energy to immediately surrounding tissues, increasing 
the locally delivered dose in regions of high NP concentration. This ra-
diation augmentation has been studied by several groups to effectively 
treat cancer in multiple animal models [43-50]. Local enhancement of 
RT was also described with tumor vascular-targeted RGD-AuNPs [42]. In 
addition to targeting RGD receptors for micro-CT based molecular im-
aging, RGD-AuNPs induced tumor vascular disruption during RT, 
prompting extensive tumor cell death and facilitating increased delivery 
of liposomal chemotherapeutics. The study showed the value of DE EID 
micro-CT in providing non-invasive visualization of the NP probe dis-
tribution within treated sarcoma tumors. The authors studied the com-
bination of RGD-AuNP based RT augmentation (Fig. 7) with the delivery 
of a liposomal drugs (Doxil) [42]. The combination of RGD-AuNP 
augmented RT and Doxil proved to be the most effective combination 
in delaying the tumor doubling time. 

CT theranostics extends to more than RT or chemotherapy. AuNPs 
also exhibit high absorbance of light at their surface plasmon resonance 

Table 2 
Examples of commercially available contrast agents for micro-CT.  

Contrast Agent Contrast 
Element 

Characteristics 

Bracco Imaging, 
Iopamidol 
(Isovue-370) 

Iodine - Small molecular weight contrast agent 
used in humans 
- Rapidly excreted by the kidneys 
- Can be used for perfusion micro-CT or to 
study kidneys 

MediLumine, 
Fenestra LC/VC 

Iodine - Lipid emulsion containing an iodine-based 
compound 
- VC is for vascular contrast, LC is for liver 
contrast 
- Used for in vivo preclinical imaging 

Binitio Biomedical, 
eXIA 160, eXIA 
160XL 

Iodine - Aqueous, colloidal, poly-disperse contrast 
agents behaving initially as blood pool 
contrast agents 
- Subsequently taken up by the myocardium 
and other metabolically active tissues over 
time [9] 
- Metabolized by catabolic pathways in the 
body thus enabling metabolic imaging of 
the myocardium and brown adipose tissue 
- Used for in vivo preclinical imaging 

Miltenyibiotec, 
ExiTron nano 
6000,12000 

Barium - Nanoparticle-based blood pool contrast 
agents 
- Accumulates over time, particularly in the 
liver and spleen 
- Used for in vivo preclinical imaging 

Nanoprobes, 
Aurovist 15 

Gold - Nanoparticle-based blood pool contrast 
agent 
- Accumulates over time, particularly in the 
liver and spleen 
- Used for in vivo preclinical imaging 

Scarletimaging, 
BriteVu 

Barium It is used only for ex vivo studies as an 
intravascular agent to cast the 
cardiovascular system down to the capillary 
level.  
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wavelength. For many AuNP shapes (e.g. nanorods, nanoshells, nano-
stars), this plasmon resonance occurs in the near infrared region, which 
is optimal for use with photothermal heating. In photothermal heating, 
nanoparticles convert laser light into heat, which leads to local hyper-
thermia. This effect can be used for tumor ablation. The use of NPs for 

combined micro-CT imaging and photothermal therapy has been 
reviewed [51]. Au nanorods [52] and hollow Au nanoshells [49] have 
both been used for combined micro-CT imaging, radiation therapy, and 
photothermal therapy. Au nanostar theranostic probes were used for 
micro-CT imaging and photothermal therapy in a mouse model of 

Table 3 
Summary of data acquisition and reconstruction parameters for the figures in this work. PCD: Photon Counting Detector. EID: Energy Integrating Detector.  

Figure Scanner Model Acquisition and Reconstruction Contrast Agent(s) Voxel Size (Resolution) Reported Dose 

1 CosmoScan FX 
Rigaku Corporation 

- 2 min. at 90 kVp, 88 μA, FOV 45 mm 
- CosmoScan Database software 

N/A 90 μm Not reported 

2 - Custom-built system within a 
refurbished clinical CT gantry 
- Dexela 2923 MAM EID, 
Perkin Elmer Inc. 
- L10951 source, Hamamatsu 
Photonics K. K. 

- 5 min. at 60 kVp, 50 W 
- 11.7 ms exposure per projection 
- 10 cardiac, 4 respiratory phases 
- Intrinsic gating 
- Motion compensated reconstruction [10] 
- Post-reconstruction denoising [11] 

ExiTron nano 12,000 (Ba 
based), nanoPET Pharma 
GmbH 

<75 μm 
(10% MTF: 7.5 lp/mm) 

5 Gy 
(0.5–2 Gy results also 
demonstrated) 

3 - Custom-built ex vivo scanner 
- Rotating specimen geometry 
- XCounter Thor PCD, Direct 
Conversion AB 
- L9181-02 source, 
Hamamatsu Photonics K. K. 

- 2 h at 80 kVp, 0.2 mA 
- Helical acquisition with 2.5 cm vertical 
translation (1070 projections, 1070◦) 
- Split Bregman algebraic reconstruction 
regularized with rank-sparse kernel regression  
[12] 

BriteVu (Ba based), Scarlet 
Imaging 

38 μm 
(10% MTF: 6.5–7.1 lp/ 
mm) 

N/A (ex vivo) 

4 - Custom dual-source, dual- 
energy in vivo scanner 
- Vertical subject geometry 
- Dexela 1512CL EID (CsI), 
Perkin Elmer Inc. 
- G-297 sources, Varex 
Imaging 

- Chain 1: 40 kVp, 50 mA, 25 ms 
- Chain 2: 80 kVp, 40 mA, 10 ms 
- Circular scan (360 projections, 360◦) 
- Analytical reconstruction 
- Post-reconstruction denoising with joint 
bilateral filtration [13] 

- Iodine liposomes [14] 
− 15 nm AuroVist gold 
nanoparticles 

63 μm 
(10% MTF: 3.4 lp/mm) 

57 mGy 

5A Same as Fig. 4 - Chain 1: 40 kVp, 50 mA, 25 ms 
- Chain 2: 50 kVp, 80 mA, 12.5 ms 
- Circular scan (720 projections, 360◦) 
- Split Bregman algebraic reconstruction 
regularized with rank-sparse kernel regression  
[12] 

- Iodine liposomes [14] 
- Gadolinium liposomes  
[15] 

123 μm 
(10% MTF: 3.4 lp/mm) 

162 mGy 

5B - Custom-built in vivo scanner 
- Vertical subject geometry 
- SANTIS 0804 ME prototype 
PCD, Dectris AG 
- G-297 source, Varex Imaging 

- 3 min. at 80 KVp, 2 mA, 200 ms 
- Helical acquisition, 1.25 cm vertical 
translation (900 projections, 1070◦) 
- Energy thresholds: 25, 34, 50, 60 keV 
- Split Bregman algebraic reconstruction 
regularized with rank-sparse kernel regression  
[12] 

- Iodine liposomes [14] 
- Gadolinium liposomes  
[15] 

123 μm 
(10% MTF: 3.5 lp/mm) 

43 mGy 

6 Same as Fig. 5B - 90 sec. at 80 KVp, 5 mA, 10 ms 
- Helical acquisition, 1.25 cm vertical 
translation (9000 projections, 1070◦) 
- 10 cardiac phases, retrospective gating 
- Energy thresholds: 25, 34, 40, 55 keV 
- Split Bregman algebraic reconstruction 
regularized with rank-sparse kernel regression  
[12] 

- Iodine liposomes [14] 
− 15 nm AuroVist gold 
nanoparticles 

123 μm 
(10% MTF: 2.8–3.0 lp/ 
mm depending on energy 
threshold) 

190 mGy 

7 Similar to Fig. 4  - Iodine liposomes [14]   
8 - Edge-illumination XPC 

imaging 
- Pixirad-2 PCD [16] 
- MicroMax-007 HF, Rigaku 
source (Mo anode) 
- 30 μm Mo source filter 

- 18 h at 40 kVp, 30 mA, 1 s 
- 1441 projection angles over 360◦

- 5 phase steps, 4 dithering steps per angle 
- Reconstruction with filtered backprojection 
(Hilbert filter for phase) 
- Sample translation during scanning to reduce 
ring artifacts 

N/A (19 μm FWHM) Not measured (lower 
dose 300 mGy scan also 
presented) 

9 Same CT data as in Fig. 6 - Only 25 keV threshold data used for 4D CNN 
training 
- 10 cardiac phases, retrospective gating 
- Split Bregman algebraic reconstruction 
regularized with rank-sparse kernel regression  
[12] (Fig. 9B; CNN training labels; 9000 
projections over 1070◦) 
- Unregularized algebraic reconstruction ( 
Fig. 9C; CNN training inputs; subsampled to 
2250 projections over 1070◦)  

123 μm 
(10% MTF: 2.7 lp/mm, 
4D CNN output, Fig. 9D)  

10 - Non-contrast scans: 
TomoScope Duo commercial 
scanner, formerly CT Imaging 
GmbH 
- Contrast-enhanced scans: 
InSyTe μCT commercial 
scanner, Trifoil Imaging 

- Non-contrast scans: 90 sec. per scan, 65 kVp, 1 
mA; 720 projections over 360◦

- Contrast-enhanced scans: 75 kVp, 230 ms; 207 
projections over 360◦

- No contrast or ExiTron 
nano 6000 (Ba based), 
nanoPET Pharma GmbH 

- Non-contrast scans: 80 
μm spatial resolution 
reported 
- Contrast scans: 280 μm 
voxels 
- Segmentations 
processed with 240 μm 
voxels 

Not reported  
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primary soft tissue sarcoma [53]. 

7. Reconstruction of CT data 

Reconstruction of CT data involves mathematically inverting the 
data acquisition process to digitally reproduce the distribution of x-ray 
attenuation within component tissues or materials. Scanning dynamic 
objects, such as a beating heart, requires projection gating strategies to 
ensure data consistency; otherwise, reconstructions will represent the 
average attenuation over the data acquisition interval. Interested 
readers will find more information on common CT scanning geometries 
and on data requirements and gating techniques for accurate recon-
struction in prior works [54]. 

Most commonly, CT data acquisition and reconstruction workflows 
are engineered for compatibility with analytical reconstruction (AR) 
algorithms. AR algorithms reconstruct an image by inverting an integral 
transform of the distribution of the linear attenuation coefficients, i.e., 
the Radon transform or the x-ray transform [55]. Such integral 

transforms are ideal representations of the (forward) x-ray projection 
process underlying the data acquisition step. When acquiring data in a 
circular, cone-beam geometry, the solution to this inverse problem is not 
exact [56] and hence approximated solutions are employed. Approxi-
mate AR algorithms are attractive for their computational speed, and 
they are commonly used to initialize more advanced algorithms. The 
most used analytical algorithms are variations on filtered backprojection 
(FBP), where a frequency-domain filter is applied to rows of CT pro-
jection data prior to inversion of the data acquisition process. Common 
examples of FBP include the FDK algorithm [57], for reconstruction of 
circular, cone-beam data, and the WFBP algorithm [58], for data ac-
quired with a helical geometry. Notably, more computationally expen-
sive, theoretically exact reconstruction algorithms are also available for 
helical, cone-beam CT [59]. 

To maintain constant image noise, imaging dose must be increased 
inversely to image voxel size with a fourth-power relationship [60]. In 
other words, at constant object size moving from 500-μm voxels in a 
clinical scan to 100-μm voxels in a preclinical scan would require a ~ 

Fig. 1. Micro-CT imaging of the lungs of infected Syrian hamsters. (A) Axial CT images of the thorax in mock-infected control, low dose-infected, and high dose- 
infected animals showing lung abnormalities over a 14-day period (white arrowheads). Lung abnormalities were first detected 2 days postinfection, and the most 
severe changes were observed 8 days postinfection in virus-infected animals. The high dose-infected animals had, overall, more severe lung abnormalities compared 
to the low dose-infected animals. Lung abnormalities began to improve 10 days postinfection for both low dose- and high dose-infected animals. On day 14 post-
infection, the high dose-infected animals had a higher degree of residual lung abnormalities compared to the low dose-infected animals, highlighted by the black 
arrowhead. Pneumomediastinum is labeled by the white asterisk (*). Note that the day 0 control image was only obtained for the high dose-infected animal and is not 
available for the low dose-infected or mock-infected animals. (B–H) Dorsal/coronal plane reconstruction CT images of the thorax in low dose-infected and high dose- 
infected animals showing (B) a control image, (C and D) initial lung changes, (E and F) most severe lung changes, and (G and H) the beginning of the recovery phase 
over time. The high dose-infected animals had more severe lung abnormalities than the low dose-infected animals. Figure reproduced from [17] with cropping under 
the Creative Commons CC BY license. 
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625-fold increase in imaging dose to maintain image noise. For in vivo 
micro-CT in mice, these dose constraints compound with additional 
challenges of imaging mice with high heart rates (up to 600 beats/min) 
and respiratory rates (up to 230 breaths/min). Therefore, dose and noise 
reduction strategies are equally important for reducing exposure to 
human patients and for fundamentally enabling advanced preclinical 
imaging applications. In line with the computational efficiency of FBP 
algorithms, computationally efficient approaches to image noise 
reduction include windowed frequency filters used for FBP (e.g. Cosine, 
Hamming window), which trade spatial resolution for reduced image 
noise, and post-reconstruction image denoising with neighborhood- 
based filters (e.g. bilateral filtration [61]). 

Iterative reconstruction (IR) techniques model both the forward 
(projection) and inverse (backprojection) of the data acquisition pro-
cess, incrementally updating the reconstructed data such that its syn-
thetic reprojections better agree with the physically acquired projection 
data [62]. IR is more computationally expensive than AR, but offers 
numerous potential benefits in handling non-ideal imaging geometries, 
missing data, redundant data, and image noise and artifacts [63,64]. 
Continuing advancements in parallel computing hardware (e.g. GPUs) 
and software now enable simultaneous IR of temporal and spectral x-ray 
CT data sets spanning multiple volumes (multiple phases and/or en-
ergies). For instance, multi-channel regularization such as patch-based 

singular value thresholding [65], rank-sparse kernel regression [12], 
oriented filtering [11], and deformable image registration [10] exploit 
prior knowledge of data structure to dramatically improve the fidelity of 
reconstructed images. These data regularizers are often incorporated as 
“plug-and-play” regularizers within robust algebraic reconstruction 
frameworks such as the Alternating Direction Method of Multipliers 
(ADMM) and the split Bregman method [66,67]. 

Advanced model-based IR techniques further incorporate accurate 
models of the x-ray source spectral properties, the detection process, and 
x-ray physics into the reconstruction problem to improve reconstruction 
quality. For instance, modeling the polychromatic nature of x-ray 
sources and more realistic photon statistics can improve the accuracy of 
spectral CT reconstruction [68,69]. Modeling blur and noise correlations 
introduced by the finite size of the x-ray source focal spot can yield re-
constructions with higher spatial resolution [70]. Finally, modeling 
complex physical phenomena and signal correlations inherent in PCD 
CT [33,71] during reconstruction may be required to fully realize the 
potential of the technology. 

Most recently, deep learning has emerged as a means to approximate 
or supplement IR techniques, improving data regularization and 
significantly reducing computation time. New deep learning approaches 
to CT image denoising and reconstruction are discussed in the Deep 
learning for micro-CT section of this review paper. 

Fig. 2. Phase-correlated reconstructions of a mouse showing different cardiac motion states (columns). The first row illustrates axial slices, the second row coronal 
slices, and the third row a sliding thin slab-maximum intensity projections (STS-MIP). The asterisk marks the first bifurcation of the left coronary artery. (C = 300HU, 
W = 1500HU). Figure reproduced from [24] without modification under the Creative Commons CC BY license. 
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8. Phase contrast micro-CT 

Addressing poor contrast resolution in soft tissues is an on-going 
challenge for CT imaging. For in vivo imaging, this challenge can be 
addressed through the use of exogenous contrast agents and spectral CT 
(Figs. 4-7), while for ex vivo imaging vascular casting in whole animals 
(Fig. 3) and direct staining of small biological samples [72] are possible. 
X-ray phase contrast (XPC) imaging provides a compelling alternative to 
these x-ray absorption imaging methods and does not require contrast 
agents. Rather than treating x-rays as particles, XPC signal is derived 

from the treatment of x-rays as electromagnetic waves. Specifically, the 
complex index of refraction for x-rays is expressed as n = 1 − δ + iβ, 
where β describes the absorption of x-rays and δ describes x-ray phase 
shifts. Both quantities depend on the x-ray wavelength (energy). For 
diagnostic x-rays (10–100 keV) and biological soft tissues, δ is up to 
three orders of magnitude larger than β and falls off more slowly with 
increasing x-ray energy, providing a strong signal for imaging [73,74]. 

In our previous micro-CT review paper from 2014 [2], we outlined 
and described several classes of XPC imaging systems with the potential 
for CT imaging. Broadly these systems can be classified into 

Fig. 3. Examples of high-resolution, ex vivo vascular imaging using micro-CT and BriteVu as a vascular contrast agent. We illustrate mouse vasculature in the kidney 
(A), the head (B), and the thorax (C). 
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Fig. 4. DE CT imaging enables quantitative, 3D mapping of extrinsic contrast agents (iodine, red; gold, green) and soft tissues (gray) present in the subject (coronal 
maximum intensity projections shown through a live mouse). However, because DE CT with EIDs provide only two independent measurements with limited 
sensitivity, it is difficult to separate certain intrinsic materials, such as bones (see ribs, yellow arrow), from gold nanoparticles accumulated in the spleen (blue arrow). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Application of in vivo DE EID CT (A) and PC CT (B) in delayed-phase imaging of a sarcoma tumor (yellow circles; maximum intensity projection images 
shown). At Day 0, 3 h after injection, liposomal gadolinium (green, mg/mL) has already begun to accumulate within the sarcoma tumor (yellow circles), allowing 
visualization and quantification of tumor vascular permeability. On Day 3, immediately after liposomal iodine injection (red, mg/mL), material decomposition can be 
used to correlate tumor vascular permeability (gadolinium signal) and tumor vascular density (iodine signal). These signals are indicative of tumor response to 
potential therapies. Additional spectral information provided by PC CT reduces background signal and improves separation of contrast materials from bone and soft 
tissues (photoelectric effect, PE map, blue; Compton scattering, CS map, gray) compared with DE EID CT. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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propagation-based systems, which rely on the propagation distance of x- 
rays after they have been refracted within the sample to resolve phase 
changes, analyzer-crystal based systems, which exploit Bragg diffraction 
within single crystals to measure phase changes, and grating in-
terferometers, which use micron-scale gratings to create interference 
fringes in x-ray waves that are sensitive to phase changes caused by the 
sample. Requirements on x-ray beam coherence limited the use of these 
systems to large synchrotron facilities until Pfeiffer et al. demonstrated 
an effective adaptation of the Talbot-Lau grating interferometer for use 
with polychromatic laboratory sources. Their adaptation used an addi-
tional source grating which collimated the source beam into an array of 
individually coherent x-ray line sources suitable for differential phase 
recovery [75]. Despite their advancement, this and several other early 
laboratory XPC systems required significant scanning times (hours to 
tens of hours) to acquire tomographic data suitable for reconstruction. 
These systems were limited by the x-ray flux of collimated or filtered 

laboratory sources and the need to acquire projections in several steps to 
recover phase information. In addition to reconstructing phase infor-
mation, these systems allowed the reconstruction of absorption images 
and small-angle scatter images (dark-field images, [76]). 

In this review paper, we summarize two recent applications of XPC 
enhanced imaging to preclinical micro-CT and highlight the advance-
ments they represent in the field. First, the work of Reichardt et al. [77] 
applies tomographic, propagation-based XPC imaging to study the 
orientation of muscle fibers in the mouse heart. Phase information 
provides contrast between muscle fibers in x-ray CT scans at spatial 
resolutions which are not generally attainable with MRI or ultrasound 
(<10 μm). Fiber tracking algorithms are applied to the reconstructed 
data to study heart microstructure. Rather than performing a stepping 
procedure to recover phase information at each projection angle, they 
reconstruct a mixed absorption and XPC image after post-processing 
their projection data to reduce artifacts. Key to the success of their 

Fig. 6. Photon-counting cardiac CT in the mouse. (A) Matching 2D slices are shown at diastole and systole in axial and coronal orientations. Complementary 3D 
renderings show the four chambers of the heart and the aortic arch, including a segmentation of the left ventricle (LV) used to derive cardiac functional metrics. 
Decomposition was performed into three basis materials: iodine (red), photoelectric effect (PE, green), and Compton scattering (gray). Calibration vials containing 
gold (Au, 5 mg/mL), water (W), and iodine (I, 12 mg/mL) can be seen in the axial slices. Calcified atherosclerotic plaques (white arrow) appear prominently within 
the PE map, near the aortic valve and within the aortic arch, and are denoted by dashed circles. (B) Left ventricular volume curves are plotted along with a table of 
the heart rate (HR, beats/min), breathing rate (BR, breaths/min), stroke volume (SV, μL), ejection fraction (EF), and cardiac output (CO, mL/min) for 4 mice (M#). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. (A) AuNPs + RT causes vascular disruption and boosts delivery of liposomes. (B) DE EID CT shows Lip-I in a sarcoma (ellipse). Lip-I served as surrogate for 
Doxil. (C) The combined therapy with RGD-AuNPs + RT and Doxil showed a significant growth delay (increase in tumor doubling times) compared to all other 
treatment groups. 
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imaging system is a newer technology known as a liquid metal jet (LMJ) 
x-ray source (Excillum, AB; Kista, Sweden). LMJ sources fill a gap be-
tween the high flux provided by a synchrotron and the availability of 
laboratory sources, providing higher flux at the small focal spot sizes 
required for XPC imaging [78]. Reported scan times ranged from ~ 1–2 
h to obtain low-noise data at high spatial resolution (5–10 μm). 

Second, the work of Hagen et al. [79] demonstrates an alternative to 
the Talbot-Lau grating interferometer for XPC imaging with a standard 
laboratory x-ray source. Specifically, their edge illumination (EI) 
approach employs two gratings which are selectively opaque to x-rays: a 
source grating, which creates an array of narrow x-ray beamlets, and a 
complementary detector mask. The source grating satisfies the beam 
coherence requirements for phase retrieval. Stepwise translation of the 
source grating at each projection angle variably blocks the primary x-ray 
beamlets at the detector mask while recording signal from refracted x- 
rays. Stepwise translation data allows post-scan computation of phase 
information in addition to absorption data. Alternatively, as in the work 
of Reichardt et al. [77], a mixed absorption-phase image can be recon-
structed by imaging with the source grating at a single position and post- 
processing the projection data prior to reconstruction. Notably, imaging 
with small x-ray beamlets and a detector mask further allowed 
enhancement of spatial resolution via sub-pixel translation of their 
sample between scans (dithering). 

Fig. 8 reproduces results from the work of Hagen et al. using dith-
ering to improve spatial resolution (19 μm in the phase image) and 
stepwise translation of the source grating to allow separate reconstruc-
tion of the attenuation (Fig. 8a) and phase (Fig. 8b) data (ex vivo mouse 
data). The authors report that the contrast-to-noise ratio (CNR) 
measured between fat and muscle increased 3-fold from the attenuation 
image to the phase image, demonstrating the advantages of XPC imag-
ing. The results in Fig. 8 represent an 18-hour scan, but the authors also 
performed a 13-minute scan at a single source grating position and 
without the use of dithering (50 μm spatial resolution). This second scan 
represents an important step toward high-throughput XPC enhanced 
imaging; however, the reported 300 mGy dose may be high for longi-
tudinal in vivo imaging, and the authors note a loss of spatial resolution 
around bones caused by assumptions made when processing mixed 

absorption-phase data. 
In addition to polychromatic laboratory sources, LMJ sources, and 

synchrotron facilities, we note a fourth class of x-ray sources with po-
tential for XPC imaging in small animals: compact light sources (CLS). 
Broadly, these CLS exploit physical interactions between lasers and free 
electrons (inverse Compton scattering; Thomson scattering) to produce 
x-rays in the keV range. Because the laser light is focused on the point of 
interaction, x-rays can be generated with a photon flux, beam diver-
gence, and focal spot size suitable for XPC imaging. Furthermore, 
because of the electron beam energies involved, CLS can be constructed 
at a scale suitable for installation at research facilities or hospitals. 
Additional benefits of CLS include quasi-monochromatic x-rays at 
tunable energies, which can reduce spectral artifacts and improve image 
contrast, and extremely short x-ray pulses, which can benefit dynamic 
experiments. In 2015, XPC imaging was demonstrated using a prototype 
CLS from Lyncean Technologies, Inc. (Fremont, CA) [80]. The com-
mercial product was later installed at the Munich Compact Light Source 
and has since been used for micro-CT imaging, propagation and grating- 
based XPC imaging, and K-edge subtraction imaging [81]. Alternative 
CLS designs have been presented by other groups [82], and it has been 
shown in simulations that CLSs may provide an ideal solution for in vivo 
dynamic imaging in small animals [83]. 

9. Deep learning for micro-CT 

In the past decade, deep learning (DL) has touched nearly every 
aspect of medical imaging, transitioning the field from hand-crafted 
feature classifiers employed by a select few experts to data-driven 
learning of complex relationships employed ubiquitously in the field. 
In this review paper, we focus on the impact of recent developments on 
the broader field of x-ray CT because many of these developments apply 
equally to clinical and preclinical CT. We then feature several recent 
works which have successfully applied these techniques to micro-CT 
data, and we outline several challenges specific to micro-CT which 
may be addressed with DL. In the interest of brevity, we assume famil-
iarity with fundamental DL concepts such as convolution neural network 
(CNN) structures (e.g. ResNet [84], U-Net [85], GAN [86]) and 

Fig. 8. Sub-pixel resolution EI XPC micro-CT images of a mouse chest, acquired with the dithered, multi-frame scheme. (a) Reconstructed attenuation image. (b) 
Reconstructed phase image. Figure reproduced from [79] without modification under the Creative Commons CC BY license. Note that the line profiles and CNR boxes 
shown in this figure were used to measure contrast-to-noise ratios and spatial resolution in the cited work. 
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supervised learning with batched, stochastic gradient descent. For those 
unfamiliar with DL, we recommend as background reading one of 
several high-quality review papers which provide an overview of 
fundamental concepts [87,88]. 

9.1. Data 

Regardless of the target application, successful DL projects share 
several common traits: the utilization of high-performance computing 
hardware and software, training on large, high-quality data sets, and 
open-source distribution of sample code and pre-trained models. Since 
computing hardware and software are largely application agnostic and 
numerous examples of open-source code distribution can be found on 
popular code-sharing sites, it stands to reason that the bottleneck in 
many DL projects is the availability of application-specific training data. 
For CT imaging specifically, open-access datasets and databases such as 
the Mayo Clinic Low Dose CT Grand Challenge dataset [89], the NIH- 
funded Cancer Imaging Archive, and preclinical micro-CT scans with 
organ segmentations [90] represent cornerstones for reproducible 
research and the assessment of newer models. In the future, these data 
sources and their processing pipelines will be harmonized through 
shared cloud computing platforms like the FLI-IAM architecture [91] 
and by community standards like those proposed by the Global Bio-
Imaging network [92]. For now, however, these data sources are notable 
exceptions to the “siloed” nature of medical imaging data: data must be 
pooled between health organizations to provide sufficient data for 
model training, but privacy, legal, and financial concerns and incon-
sistent data processing restrict such pooling. The interested reader can 
find more information on federated learning, a partial solution to these 
problems, in relevant literature [93]. 

Preclinical micro-CT data provides a compelling alternative to clin-
ical CT data for DL research. Preclinical systems can reproduce the 
system geometries, x-ray physics, and most imaging protocols associated 
with clinical CT while placing fewer constraints on the acquisition and 
distribution of CT data sets. In the subsequent sections of this review, we 
highlight several preclinical DL projects with strong potential for clinical 
translation. Furthermore, we highlight several challenges unique to DL 
micro-CT projects and outline several promising directions for ongoing 
research. 

9.2. Denoising and iterative reconstruction 

Image denoising with DL has advanced real-world performance in 
one of the most thoroughly studied areas of digital signal processing by 
augmenting traditional signal models and inversion techniques with 
data-driven learning. The denoising problem is inherent in most DL tasks 
as networks must learn to generalize their performance over training 
data in the presence of noise. For CT denoising, there is an inverse 
relationship between radiation dose, which can be harmful to patients, 
and the noise level in reconstructed images. To reduce imaging dose, the 
x-ray exposure per projection or the number of projections is reduced, 
resulting in photon starvation or view undersampling artifacts. Using 
traditional signal models, it is often difficult and computationally 
expensive to robustly reconstruct this low-dose data. This difficulty has 
made computationally efficient DL methods attractive for processing 
low-dose CT data. 

In literature, supervised learning methods for CT denoising and 
reconstruction are the most popular [94-100]: networks are trained to 
reproduce full-dose CT data from low-dose inputs. Ideally, the trained 
network can then be applied to newly acquired low-dose data, recov-
ering the full-dose data at minimal risk to the patient. Because this 
approach often approximates traditional reconstruction methods and 
involves signal recovery from corrupted measurements, it is sometimes 
referred to as “reconstruction” even when the network performs image- 
domain denoising only [96,101]. Supervised learning is particularly 
attractive when projection data sets are available because realistic 

photon noise can be added to the projections, simulating a large number 
of lower-dose acquisitions, or the number of projections can be artifi-
cially reduced. There are, however, several issues with this paradigm. 
The limited availability of clinical projection data and memory con-
straints associated with 3D processing have led many authors to repro-
ject reconstructed data in a simpler 2D geometry, possibly separating the 
problem from reality. Furthermore, trained networks often perform 
poorly when applied to data under- or un-represented in the training set 
(e.g. data with higher levels of noise [102], different spatial resolution 
[103], different contrast [104]). This can lead to unpredictable or 
misleading behavior when the DL model is applied to new data. 

Fig. 9 illustrates an example of image-domain denoising applied to 
preclinical micro-CT data [101]. Extending the above supervised 
learning paradigm to time-resolved, volumetric image data, a CNN was 
trained to reproduce iterative reconstructions of full-dose, cardiac 
micro-CT data sets from quarter-dose reconstructions. Dose was reduced 
by using a subset of projections for reconstruction, allowing four inde-
pendent results from the same data set to be compared. This study 
demonstrates that supervised learning, commonly applied to 2D image 
data, readily extends to time-resolved, volumetric image data and can 
closely reproduce the spatial resolution and noise properties of 
computationally expensive, iterative reconstructions. 

Supervised training requires labeled or paired datasets. Assembling 
sufficient data for training may be difficult (clinical projection data), 
impractical (manual labeling), or impossible (noise-free data) in certain 
applications. This has led to a number of alternative training strategies 
which relax or eliminate supervision requirements. For denoising, the 
“Noise2Noise” model uses pairs of noisy images which share the same 
underlying, noise-free image [105]. Because the network cannot learn to 
reproduce random noise in the training target, it instead converges to a 
denoised image close to the true, noise-free image (under mild statistical 
assumptions). This model inspired a self-supervised learning model 
called “Noise2Void” which uses unpaired, noisy images [106]. Pixels 
removed from the noisy input image are used as labels, and the network 
is trained to infer the intensity value of the missing pixels by learning 
feature correlations. The Noise2Void model may be attractive for dy-
namic imaging applications (cardiac CT, perfusion imaging) where it is 
difficult to assemble redundant, noisy image pairs, but the Noise2Void 
authors demonstrate that the Noise2Noise model performs slightly 
better when image pairs are available. 

For both supervised and unsupervised training, variational models 
represent an important class of DL models for medical imaging. Decades 
of literature exist on analytical and iterative optimization (reconstruc-
tion) techniques and regularization penalty functions for medical image 
processing. Variational models borrow the structure of these proven 
techniques, guiding stochastic training with domain-specific priors, 
while maintaining the myriad benefits of data-driven generalization. 
Successful application of variational models has been demonstrated in 
both MRI [107] and CT [96,97,99,100,108] denoising and reconstruc-
tion tasks. As we will illustrate in the following sub-sections on other DL 
applications, the incorporation of domain-specific knowledge into DL 
projects is a clear trend and will be critical to the adoption of DL tech-
nology in routine practice. 

9.3. Spectral processing 

In this review paper, we talk extensively about the future of quan-
titative imaging using dual-energy and multi-energy CT. DL methods 
have been proposed to overcome a number of challenges associated with 
spectral CT data, including high levels of noise, missing data, and 
physical degradation of the recorded signal. Noise amplification during 
material decomposition and spectral post-processing limits sensitivity to 
contrast materials and low-contrast features, particularly for low-dose 
acquisition protocols. Supervised training of CNNs represents an ideal 
solution to this problem because networks can learn to identify valid 
combinations of spatial features and spectral contrast, enforcing data- 
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driven priors in a way that is difficult to reproduce with analytical ap-
proaches [104,109,110]. Similarly, supervised training has been applied 
to correct or compensate for sources of spectral distortion inherent in 
photon-counting CT [111,112]. Complex and expensive modeling is 
required to accurately simulate the detection process in PCDs [33,71]. 
We anticipate that DL will play a key role in efficiently incorporating 
these physical models into routine corrections applied to PC data. 
Finally, we note a trend in recent literature: estimating missing spectral 
information with DL priors. This has been demonstrated in the context of 
spectral extrapolation for dual-energy field-of-view extension [113], 
estimation of virtual monoenergetic images from single-energy data 
[114], and estimation of material maps form single-energy data [115]. 
Success in these applications speaks to the power of DL to model and 
enforce underlying relationships between image features and spectral 
contrast; however, significant work remains to understand the limita-
tions and uncertainty inherent in these methods, with particular regard 
to unique or pathological data which may poorly represented. 

9.4. Segmentation and registration 

In addition to robust processing methods, image registration and 
segmentation are fundamental for extracting quantitative data from 
medical images. For instance, when performing a longitudinal cancer 
study, automatic segmentation of tumor volumes combined with regis-
tration between time points can be used to track tumor growth and to 
classify features indicative of treatment outcomes [116,117]. DL has 
advanced the state-of-the-art for image segmentation both in terms of 
accuracy and speed [118-120]. Here, we feature the work of Schoppe 
et al. [118] who use a dataset of pre- and post-contrast micro-CT scans of 
the mouse, including multi-organ segmentations, [90] to train a DL 
model (Fig. 10). Their work demonstrates whole-body, multi-organ 
segmentation within one second. Furthermore, they tackle several 
important issues related to segmentation, including the modeling of 
uncertainty between human segmenters and transfer learning between 
imaging modalities. 

Image registration is a similarly active area of DL and medical im-
aging research because of its role in quantitative image analysis. 
Following recent review papers on the subject [121,122], DL approaches 
to registration began with supervised learning of image similarity met-
rics. Replacing common metrics like mean-squared-error or mutual 

information, these learned metrics can then be minimized iteratively 
and at progressively higher resolution levels to map a moving image to a 
fixed image. Several works have demonstrated superior registration 
performance with learned similarity metrics, particularly when regis-
tering data from different imaging modalities [123,124]; however, the 
performance of these methods is limited by the computational cost of 
iterative optimization. This has led to a number of more recent works 
where networks are trained to estimate the final image transformation 
directly [125,126]. Differentiable transformer modules [127] can be 
incorporated into these direct registration models to apply the trans-
formation within the model and to return the registered moving image. 
Both supervised and unsupervised learning approaches to image regis-
tration have been used. Specifically, there is increasing focus on unsu-
pervised, direct estimation of registration parameters, to make efficient 
use of unpaired training data [126], and adversarial penalty functions, 
to learn more realistic transformations [128]. GPU memory limitations 
continue to be a bottleneck in training models for 3D, deformable image 
registration. 

9.5. Super-resolution 

Physical and practical constraints associated with imaging often 
limit spatial resolution below what is optimal for a specific application. 
Conceptually, post-process enhancement of spatial resolution is an 
attractive solution; however, this “super-resolution” inverse problem is 
inherently ill-conditioned, even when an accurate forward model of the 
imaging system is available. Recent works have demonstrated that 
domain-specific DL can excel in this and related “image-to-image 
translation” problems under the assumption of a shared latent space 
[129]. Practically, this means that if low- and high-resolution image 
patches can be mapped to the same compressed representation, they can 
be interchanged to enhance resolution. With regard to x-ray CT, You 
et al. proposed GAN-CIRCLE to enhance the spatial resolution of both 
micro-CT scans of bone and clinical CT scans of human paitents [130]. 
To overcome instabilities often associated with adversarial training and 
inverse problems, they used cycle-consistency constraints: estimated 
high-resolution images must map back to their low-resolution inputs and 
vice versa. Zheng et al. similarly used the GAN-CIRCLE model to 
enhance clinical CT scans with high resolution textures learned from ex 
vivo micro-CT data of the same anatomic region (lungs) [131]. They 

Fig. 9. Application of a trained, 4D CNN to in vivo testing data. (A) Fully sampled reconstruction results shown for comparison. (B) Iterative reconstruction results 
(equivalent to training labels). (C) Undersampled reconstruction results (equivalent to training data). (D) Undersampled reconstruction results passed through the 4D 
CNN. (E) Voxel-wise standard deviation measured in (D), over four independent subsets of 2250 projections. Note that the calibration bar at the bottom, right applies 
to (E) only. 
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added additional mean-squared-error constraints between the model 
inputs and outputs to ensure that intensity information remained 
consistent following resolution upsampling and downsampling. Finally, 
Holbrook et al. [132] demonstrated that PCD CT data acquired at low 
resolution could be fused with high-resolution EID CT data in a DL-based 
implementation of “pan-sharpening,” allowing high-resolution material 
decomposition. This hybrid approach to spectral CT has numerous po-
tential advantages, including dose reduction and improved spectral fi-
delity associated with larger PCD pixels [33]. 

9.6. Artifact and scatter corrections 

CT data sets often suffer from ring artifacts (variations in detector 
gain), metal artifacts (view-dependent photon starvation), and scatter 
(low-frequency background signal). Given the pervasive nature of these 
problems, numerous calibration procedures and analytical and iterative 
methods have been proposed to deal with them [133]. DL provides an 
attractive solution to these problems because their physical origins are 
well understood and can be reproduced when generating synthetic 

training data for supervised learning. Furthermore, DL provides a 
computationally efficient means to address low spatial frequencies and 
to optimize corrections for specific imaging systems and protocols. 
Example ring artifact correction papers include the work of Nauwynck 
et al. [134], who trained a multi-resolution U-Net to remove synthetic 
rings from clinical data, and the work of Holbrook et al. [135] who 
trained a similar residual U-Net to remove synthetic rings from pre-
clinical data. In both cases, application of the trained network to testing 
data with real ring artifacts showed significant high-frequency artifact 
reduction, but additional room for improvement addressing low- 
frequency artifacts. For metal artifact correction, Liao et al. [136] 
combined an adversarial penalty function with a multi-resolution metal 
mask to inpaint metal traces in sinogram data and achieved superior 
artifact suppression to several non-DL methods. Finally, Maier et al. 
[137] demonstrated effective application of DL to estimate scattered 
signal from x-ray projections. Their network reproduced gold-standard 
Monte Carlo scatter estimates at varying dose levels, source kVps, and 
anatomic regions and effectively removed CT number inaccuracies and 
streaking artifacts from reconstructed images. 

Fig. 10. Qualitative results of segmentation performance. Filled, semi-transparent areas show AIMOS (segmentation model) prediction for (a) native micro-CT and 
(b) contrast enhanced micro-CT (contrast agent: ExiTron nano 6000, nanoPET Pharma GmbH). Opaque lines indicate human expert annotations. Left column shows 
mean-intensity projections for the whole-body scan. Second column shows representative coronal slices. Remaining columns of figure show individual organs 
(coronal slice through center of organ). Figure reproduced from [118] without modification under the Creative Commons CC BY license. 
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9.7. Challenges and future directions 

In this section, we have provided a broad overview of DL applica-
tions in x-ray CT, while highlighting several successful DL projects tar-
geting preclinical micro-CT. Because the hardware, software, and 
computing resources utilized for DL projects are application agnostic, 
preclinical micro-CT will continue to serve as a crucial testing ground for 
future clinical applications. Notably, there are several general and 
unique challenges associated with preclinical micro-CT and DL. First, 
limited availability of training data at both the clinical and preclinical 
levels will continue to the slow the progress of application-specific DL 
projects. This limitation is compounded by the lack of standards in 
preclinical CT which would otherwise facilitate pooling data from 
different sources. Second, CT data is inherently three dimensional, yet 
most DL projects process data in two dimensions due to computational 
constraints. Overcoming these limitations through hardware and algo-
rithm improvements will undoubtedly lead to many new and improved 
applications. Finally, while preclinical micro-CT allows greater flexi-
bility in imaging protocol design and data sharing, it also faces strict 
trade-offs between image resolution, noise, and temporal and spectral 
resolution. These trade-offs complicate label generation for supervised 
learning. Clever solutions to these problems or alternative unsupervised 
learning methods will be crucial for advanced DL applications like PCD 
CT, XPC CT, and in vivo cardiac imaging. 

10. Discussion and conclusions 

This review paper provides a broad overview of current applications 
and research topics related to preclinical micro-CT technology. We 
began by highlighting several commercial micro-CT scanners, which 
provide prepackaged imaging solutions for in vivo and ex vivo studies, 
and then transitioned to state-of-the-art applications like in vivo, PCD- 
based spectral imaging, hybrid diagnostic-therapeutic agents for mo-
lecular imaging and theranostics, and laboratory-based XPC imaging. 
The promise of these newly developing applications has established 
micro-CT as a translational testbench for future clinical applications. 
Finally, we surveyed numerous facets of DL applied to classic medical 
imaging problems (denoising, segmentation, registration) and to CT- 
specific imaging problems (spectral and artifact corrections, low-dose 
reconstruction). It is clear that data-driven DL in tandem with domain- 
specific knowledge and hardware and software developments will 
continue to push the bounds of what is possible in the field. 

Looking forward, we are excited by future applications of preclinical 
and clinical CT technology. We believe that the future lies in multi- 
dimensional imaging applications which enhance the anatomical im-
aging CT is known for with functional and molecular information. For 
instance, future applications of coronary CT angiography using PCDs 
will inherently sample spectral information. This spectral information 
can then be used to reduce image artifacts and to improve the quanti-
fication of calcium deposits in atherosclerosis studies. Targeting nano-
particle contrast agents to the site of plaques may even allow non- 
invasive characterization of atherosclerotic plaque composition. 
Newer computational methods like DL will be required to handle the 
large volumes of data associated with these applications and to improve 
the robustness of such methods while controlling radiation dose to the 
patient. In sum, many of the advancements we have discussed in this 
review will be applied in coordination to enable fundamentally new CT 
imaging applications. 
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