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Abstract

There is currently no suitable autologous tissue to bridge large tracheal defects. As

a result, no standard of care exists for long-segment tracheal reconstruction. Tissue

engineering has the potential to create a scaffold from allografts or xenografts that

can support neotissue regeneration identical to the native trachea. Recent

advances in tissue engineering have led to the idea of partial decellularization that

allows for the creation of tracheal scaffolds that supports tracheal epithelial forma-

tion while preserving mechanical properties. However, the ability of partial decellu-

larization to eliminate graft immunogenicity remains unknown, and understanding

the immunogenic properties of partially decellularized tracheal grafts (PDTG) is a

critical step toward clinical translation. Here, we determined that tracheal allograft

immunogenicity results in epithelial cell sloughing and replacement with dysplastic

columnar epithelium and that partial decellularization creates grafts that are able to

support an epithelium without histologic signs of rejection. Moreover, allograft

implantation elicits CD8+ T-cell infiltration, a mediator of rejection, while PDTG

did not. Hence, we establish that partial decellularization eliminates allograft immu-

nogenicity while creating a scaffold for implantation that can support spatially

appropriate airway regeneration.
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1 | INTRODUCTION

Tracheal defects are rare but life-threatening. End-to-end anastomosis

is not feasible beyond a certain length, warranting tissue replacement

for reconstruction.1 Unfortunately, there is no clinical standard for

tracheal replacement. Creation of a graft that can recapitulate the

complex structure and function of the trachea is a priority within the

field of regenerative medicine.

Decellularization is a proven method of creating non-immunogenic

scaffolds via regenerative medicine, with several United States Food
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and Drug Administration approved applications.2–5 When applied to

the trachea, complete decellularization has formed scaffolds capable of

supporting functional neotissue formation in vitro, but in vivo perfor-

mance is limited by the loss of mechanical properties.6–12 Tracheal car-

tilage provides the primary structural support for the organ and efforts

to decellularize chondrocytes from the dense extracellular matrix result

in a loss of graft patency.9,10 However, complete decellularization may

not be necessary given the immunoprivileged location of chondrocytes

within the dense cartilage extracellular matrix.8,13–15 Advances in tra-

cheal tissue engineering have relied upon partial decellularization or de-

epithelialization, resulting in removal of the cells within the tracheal epi-

thelium with preservation of graft chondrocytes.15,16

Using a murine model of orthotopic tracheal transplant, we previ-

ously established that partially decellularized tracheal grafts (PDTG)

are capable of tracheal neotissue formation with preservation of

mechanical properties.16,17 Still, the ability of partial decellularization

to eliminate graft immunogenicity remains unknown, and understand-

ing the immunogenic properties of PDTG is a critical step toward clini-

cal translation. We use our murine microsurgical model to determine

if partial decellularization eliminates allograft immunogenicity, and

assess the impact of immunogenicity.

2 | METHODS

2.1 | Animal care and ethics statement

The Institutional Animal Care and Use Committee of the Abigail Wex-

ner Research Institute at Nationwide Children's Hospital (Columbus,

OH) reviewed and approved the protocol (AR15-00090). All animals

received humane care by standards published by the Public Health

Service, National Institutes of Health (Bethesda, MD) in the Care and

Use of Laboratory Animals (2011), and US Department of Agriculture

(USDA) regulations outlined in the Animal Welfare Act.

2.2 | Fabrication of PDTGs

Tracheal grafts were harvested from female 6 to 8-week-old C57BL/6

and Balb/c mice as previously published.8,18 Proximal tracheas were

dissected, and a 5 mm tracheal segment was harvested and cryopre-

served at �80�C in 1 mL cryopreservation solution (Dulbecco's Modi-

fied Eagle Medium [ATCC, Manassas, VA] with 10% fetal bovine

serum, 1% Penicillin/streptomycin, and 5% Dimethyl sulfoxide

[DMSO, ATCC]).19

PDTG derived from Balb/c (partially decellularized tracheal allo-

grafts [PDTA]) and from C7BL/6 (partially decellularized tracheal syn-

grafts [PDTS]) were produced with a 7-h decellularization protocol.

Briefly, tracheas were rinsed with 1� PBS with 1% penicillin/

streptomycin (P/S, Gibco, Thermo Fisher Scientific, Waltham, MA)

and treated with 0.01% sodium dodecyl sulfate (SDS, Sigma–Aldrich,

MO) and 0.9% sodium chloride (NaCl, Fisher Scientific, Fair Lawn, NJ)

for 5 min. The tracheas were then subjected to consecutive 3 h

graded SDS treatments of 0.01% and 0.1% SDS before soaking in

0.2% SDS and 0.1% SDS for 15 min each. They were then treated

with 1% Triton X-100 in distilled water for 5 min to remove nucleic

acids and underwent a final 0.9% NaCl wash for 15 min. All steps

were performed on a shaker at the speed of 48 rounds/min. PDTG

were cryopreserved at �80�C until use.

2.3 | Implantation of tracheal grafts

Syngeneic tracheal grafts (STG), PDTA, PDTS, and allografts (ATG)

were implanted via previously published methods (N = 5/STG,

N = 10/PDTA, PDTS, and ATG).8,18 A 5 mm tracheal segment was

harvested and immersed in phosphate-buffered saline for implanta-

tion. At the time of implantation, 4 mm segment was resected and

orthotopically implanted.8 Type of grafts implanted were randomized

within blocks of “day of procedure” and “surgeon” to experimental

groups and euthanized at various timepoints. Only female mice were

used in this study to avoid sex-specific host responses to implanted

grafts.20 10 days was used as a timepoint for acute rejection and at 1-

and 3-months were used for chronic rejection timepoints.21–23 Ani-

mals were closely monitored for early (humane) euthanasia criteria

including respiratory distress (labored breathing, stridor) and/or more

than 20% weight loss compared to weight before surgery. At a

planned or humane endpoint, animals were euthanized with Keta-

mine/Xylazine cocktail. Once euthanasia was confirmed, the entire

trachea including the graft was harvested and placed in 10% Neutral

buffered formalin.

2.4 | Histology

Formalin-fixed STG, PDTA, PDTS, and allografts were decalcified in

15% EDTA at 4�C overnight before being paraffin-embedded. Longitu-

dinal sections (4 μm) were then sectioned with microtome. The sections

were then de-paraffinized with xylenes, rehydrated with decreasing

concentrations of ethanol, and stained with hematoxylin (Sigma–

Aldrich, MO) and counterstained with eosin. Collagen fibers of tracheal

grafts implantation were stained with Masson's Trichrome. Apoptotic

cells were identified using the Terminal deoxynucleotidyl transferase

dUTP nick end labeling assay (TUNEL).

2.4.1 | T-cell infiltration

T-cell infiltration was assessed via immunofluorescent staining of

CD4 and CD8 T-cells. Briefly, the sections were stained with Rabbit

Anti-CD4 (1:500 dilution) and Rabbit Anti-CD8 (1:250 dilution) and

Anti-rabbit Alexa Fluor 594 as the secondary antibody. T-cell infil-

tration was assessed by quantifying the number of T-cells per

submucosal area.
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2.4.2 | Epithelial height

Epithelialization was assessed with hematoxylin and eosin (H&E) and

immunofluorescent staining of post-implantation tracheal sections.

Images of stained sections were captured using bright field and immu-

nofluorescent microscopy (Zeiss, Oberkochen, Germany). Average

epithelial height was measured by dividing the area of the graft epi-

thelium by the length of the graft basement membrane.

2.4.3 | Epithelialization

Longitudinal sections were stained with Mouse anti-Acyl Alpha-

tubulin (ACT) to identify ciliated epithelial cells. The extent of epithe-

lial infiltration was measured by dividing percent coverage of the

ACT-positive cells by the length of the graft.18

2.4.4 | Submucosal thickness

Submucosal thickness was quantified using ImageJ software

(U. S. National Institutes of Health, Bethesda, MD) and calculated by

averaging five regularly spaced measurements of the submucosal

height between the cartilage and basement membrane on each graft

cartilage ring.

2.4.5 | Micro-computed tomography

Micro-computed tomography (microCT) imaging was performed on

live animals to assess graft patency at 1 month and 3 months using a

μPET/CT system (U-PET6CTHR, MILabs, Utrecht, The Netherlands).

The animals were anesthetized with inhalational isoflurane in room air

at 1–3 L/min and positioned prone. The scan was set as full 360�

rotation, x-ray tube of 0.33 mA and 55 kV, 0.750� per step, 1 projec-

tion per step, 1 � 1 binning, and 40 ms exposure time. All microCT

images were reconstructed using MILabs reconstruction software

v12.0 (Utrecht, The Netherlands) with a 40 μm voxel grid, Hann pro-

jection filter, and Gaussian volume filter (160 μm). The area of airway

lumen was quantified from each slice of graft scans and analyzed

using ImageJ software.

2.4.6 | Statistical analysis

Normally distributed data were compared using Welch's t-test for

data with non-equal variances and unpaired t-test and ANOVA for

data with equal variances. Non-parametric tests (Mann Whitney-U)

were used for data that were not distributed normally. Statistical tests

were performed using the GraphPad Prism 8 software (GraphPad

Software Inc., CA). Statistical difference was defined as p < 0.05.

Experimental data were expressed as means ± standard devia-

tions (SD).

3 | RESULTS

3.1 | Orthotopic tracheal transplantation resulted
in similar graft patency and survival among graft types

All graft types remained patent with no evidence of stenosis and had

similar survival rates (Figure 1a–c). The animals tolerated orthotopic

tracheal transplantation well and did not exhibit signs of respiratory

distress at the time of euthanasia. At Day 10, allografts were found to

have diffuse epithelial sloughing and eosinophilic cellular infiltrate

within the lamina propria consistent with acute rejection. This process

also resulted in an increase in epithelial height and the loss of ciliated

cells (Figure 1d–l; Figure S1).21,24,25 There was no sign of epithelial

injury or eosinophilic infiltrate in surgical control (STG), which main-

tained an epithelium morphologically identical to the native trachea

(Figure S1). PDTG also lacked signs of injury and eosinophilic cell infil-

tration, exhibiting early graft epithelialization. Terminally differenti-

ated ciliated cells were seen repopulating PDTG at Day 10 and

recreated pseudostratified epithelium by 1-month (Figure 1i–l;

Figure S2). Conversely, allografts demonstrated a blunted epithelium

with less ciliation (p = 0.0149) (Figure 1j–l). There was no difference

in epithelial morphology between allograft-derived (PDTA) and

syngeneic-derived (PDTS) partially decellularized grafts (Figure 1d–l;

Figures S2 and S3).

3.2 | Partial decellularization attenuates CD8+
T-cell mediated rejection

We measured T-cell infiltration during acute (Day 10) and chronic

(1, 3 months) intervals to quantify the immunogenicity of PDTG. In

allografts, there was both acute and chronic elevation of CD8+ T-cells

within lamina propria (Figure 2a–f). Large amounts of CD8+ T-cells in

allografts were associated with apoptotic cells, both of which were

not found STG and PDTG (Figure 2g). CD8+ T-cells were found to be

similar in PDTA and PDTS, suggesting that partial decellularization

eliminated allograft immunogenicity. In both PDTG and allografts,

CD4+ T-cells increased at 10 days and 1 month (Figure 2h–k). At

3 months, CD4+ T-cells in PDTG were found to be equivalent to con-

trol, while allograft CD4+ T-cells remained persistently elevated.

4 | DISCUSSION

Using a mouse microsurgical model, we determined that tracheal graft

immunogenicity results in epithelial cell sloughing and replacement

with dysplastic columnar epithelium characterized by both epithelial

height and ciliated cell coverage of the graft.21,24,25 Presence of

CD4+ and CD8+ T-cells was not associated with stenosis. Epithelial

changes in allografts also appeared to be associated with an increase

in CD8+ T cells, an established mediator of rejection.26–28 Further-

more, partial decellularization removed graft immunogenicity, with no

differences between PDTA and PDTS neotissue formation, and CD8+
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T-cell levels are similar to controls and baseline. Since PDTA is gener-

ated from an allogenic trachea, this suggests that partial decellulariza-

tion does not result in acute or chronic rejection.

Our findings also suggest that neo-epithelialization is at least

partially mediated by CD4+ T-cells. Some CD4+ T-cells phenotypes

such as T-regulatory cells are essential for tissue repair and

F IGURE 1 Orthotopic tracheal transplantation resulted in similar graft patency and survival among graft types. (a) Representative images of
orthotopic tracheal transplantation. (b) Orthotopic tracheal transplantation survival rates. Animals were euthanized at 10 days, 30 days, and
90 days for end-point analysis. (c) Sagittal micro-computed tomography of the airway demonstrating graft patency, quantification of graft cross-
sectional area (yellow brackets denote graft). (d) Representative H&E sections of native and PDTG (preimplant). (e) Representative longitudinal
H&E sections of tracheal grafts (10 days). (f) Epithelial height (10 days, # represents increased epithelial height in Allograft [ATG] compared to

native, * = increased epithelial height in Allografts vs other graft types [##p = 0.0063 vs. native, *p = 0.028 vs. STG, ***p = 0.0003 vs. PDTA,
***p = 0.0003 vs. PDTS]). (g) Epithelial height at 1-month. (h) Epithelial height at 3-month # = decreased epithelial height in Allograft versus
native (p = 0.0493) * = decreased epithelial height in Allografts compared to other graft types (p = 0.0143 ATG vs. PDTA, p = 0.0211 Allograft
vs. PDTS). (i) Representative IF images of tracheal epithelium and multiciliated cells (ACT+ [red], 10 days). (j) % Graft coverage with ACT+
epithelial cells (10 days, # = decreased epithelialization vs native, p = 0.0003 vs. STG, p = 0.0037 vs. PDTS, p = 0.0019 vs. PDTA, p < 0.0001
vs. Allograft, * = change in epithelialization within graft types, p = 0.0238 Allograft vs. STG, p = 0.0013 ATG vs. PDTS, p = 0.0221 Allograft
vs. PDTA). (k) % ACT cell coverage at 1-month, * = decreased epithelialization versus other graft types (p = 0.0313 Allograft vs. STG, p = 0.0178
PDTA vs. Allograft). (l)% ACT cell coverage at 3-month, * = decreased epithelialization compared versus graft types (p = 0.0242 STG vs. Allograft,
p = 0.0402 PDTA vs. ATG, p = 0.0241 PDTS vs. Allograft). H&E, hematoxylin and eosin; IF, immunofluorescent; PDTA, partially decellularized
tracheal allografts; PDTG, partially decellularized tracheal graft; PDTS, partially decellularized tracheal syngrafts; STG, syngeneic tracheal grafts.
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F IGURE 2 Partial decellularization attenuates CD8+ T-cell mediated rejection. (a) Representative IF images of CD8+ T-cells in grafts at 10 days
and (b) native trachea (c) CD8+ T-cells/mm2 (10 days) #### = increased CD8+ T-cells vs Native (10 days, p < 0.0001) **** = decreased CD8+ T-
cells compared to Allograft (ATG) (10 days, p < 0.0001 for all graft types) * = decreased CD8+ T-cells compared to Allograft at 10 days (p = 0.0324
STG vs. PDTA, p = 0.0184 STG vs. Allograft). (d) Representative images of CD8+ T-cells in grafts at 1-month and (e) 3-months. (f) CD8+ T-cells/
mm2 at 1-month and 3-months # = increased CD8+ T-cells versus STG (p < 0.0001 for STG-1 m vs. Allograft-1 m, p < 0.0001 for STG-3 m vs. ATG-
3 m), ^ = increased CD8+ T-cells versus PDTA (p < 0.0001 for PDTA-1 m vs. Allograft-1 m, p < 0.0001 for PDTA-3 m vs. Allograft-3 m),
� = increased CD8+ T-cells versus PDTS (p < 0.0001 for PDTS-1 m vs. Allograft-1 m, p < 0.0001 for PDTS-3 m vs. Allograft-3 m), **** = decreased
CD8+ T-cells between Allograft at 1- and 3-month (p < 0.0001). (g) Representative Terminal deoxynucleotidyl transferase dUTP nick end labeling
assay (TUNEL) images of the implanted grafts. red denotes apoptotic cells while blue denotes cellular nuclei. (h) Representative IF images of CD4+ T-
cells in grafts at 10 days and (i) native trachea. (j) CD4+ T-cells/mm2 at 10 days # = increased CD4+ T-cells versus Native at 10 days (p = 0.0242
vs. PDTS, p = 0.0007 vs. PDTA, p = 0.0004 vs. Allograft). (k) CD4+ T-cells/mm2 at chronic time points * = increase in CD4+ T-cells between grafts
(p = 0.0312 for STG 1 m vs. PDTA 1 m, p = 0.0014 for STG 1 m vs. PDTS 1 m, p < 0.0001 for STG 1 m vs. Allograft 1 m, p = 0.0004 for STG 3 m
vs. Allograft 3 m, p = 0.0011 for PDTA 3 m vs. Allograft 3 m, p = 0.0020 for PDTS 3 m vs. Allograft 3 m, p = 0.0066 for STG 1 m vs. STG 3 m,
p = 0.0219 for PDTA 1 m vs. PDTA 3 m, p = 0.0226 for PDTS 1 m vs. PDTS 3 m). IF, immunofluorescent; PDTA, partially decellularized tracheal
allografts; PDTS, partially decellularized tracheal syngrafts; STG, syngeneic tracheal grafts.
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regeneration.29,30 While the increased CD4+ T-cell presence in allo-

grafts could be attributed to rejection, the elevated CD4+ T-cell levels

in PDTG at 1 month with a subsequent decrease at 3 months after cil-

iated epithelial regeneration, suggests that CD4+ presence is associ-

ated with neotissue formation. This is further supported by the

baseline levels of CD4+ T-cells in STG, which serve as a control for

tracheal replacement.

One limitation of this study is the inability to use the well-

established method of flow cytometry to assess alloreactivity and T-

cell phenotypes due to the prohibitive size of the mouse trachea. In

summary, we have established the potential of partial decellularization

to eliminate the immunogenicity of tracheal allografts while creating a

scaffold for implantation that can support spatially appropriate airway

regeneration.

5 | CONCLUSION

We have established that partial decellularization creates grafts that

are able to support epithelization while remaining patent in vivo with

similar survival rates to surgical controls. Moreover, partial decellulari-

zation does not result in rejection, indicating its potential to eliminate

the immunogenicity of tracheal allografts.
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