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Abstract
X-ray computed tomography (CT) has emerged as the most prevalent technique to obtain three-dimensional morphological

information of granular geomaterials. A key challenge in using the X-ray CT technique is to faithfully reconstruct particle

morphology based on the discretized pixel information of CT images. In this work, a novel framework based on the

machine learning technique and the level set method is proposed to segment CT images and reconstruct particles of

granular geomaterials. Within this framework, a feature-based machine learning technique termed Trainable Weka Seg-

mentation is utilized for CT image segmentation, i.e., to classify material phases and to segregate particles in contact. This

is a fundamentally different approach in that it predicts segmentation results based on a trained classifier model that

implicitly includes image features and regression functions. Subsequently, an edge-based level set method is applied to

approach an accurate characterization of the particle shape. The proposed framework is applied to reconstruct three-

dimensional realistic particle shapes of the Mojave Mars Simulant. Quantitative accuracy analysis shows that the proposed

framework exhibits superior performance over the conventional watershed-based method in terms of both the pixel-based

classification accuracy and the particle-based segmentation accuracy. Using the reconstructed realistic particles, the par-

ticle-size distribution is obtained and validated against experiment sieve analysis. Quantitative morphology analysis is

also performed, showing promising potentials of the proposed framework in characterizing granular geomaterials.
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1 Introduction

The study of particle morphological features of granular

geomaterials, including their form, sphericity, roundness,

and roughness, has been a subject of interest in the

geotechnical engineering and geomechanics community

for decades. These morphological features can help

researchers and engineers understand the forming, weath-

ering, and aging process of geomaterials [22, 43]. They are

also among the fundamental and the most salient factors

that govern the material’s macroscopic properties and

engineering behavior, such as compressibility, shear

strength, and critical state parameters [24, 47, 52, 56, 66].

Moreover, the understanding of the link between particle

morphology and its engineering behavior is of importance

to design and optimize innovative geomaterials, such as

bio-improved and bio-cemented granular soils

[10, 14, 15, 23, 55].

Experimental techniques commonly used to obtain the

morphological features of granular geomaterials include

photography [66], scanning electron microscopy [12], and

X-ray computed tomography (CT) [16]. The first two

techniques provide two-dimensional (2D) morphological

information (i.e., 2D images) that can be used to approxi-

mate or infer three-dimensional (3D) morphological fea-

tures, e.g., through a virtual 3D surface method [41] or

through enhancing the illusion of the depth of 2D images

[65]. The X-ray CT, on the other hand, can be used to

directly obtain 3D morphological information, and there-

fore, has been the most prevalent technique in recent years

[2, 20, 26, 39, 57, 59, 67]. The particle-level morphological

information can be integrated into numerical methods, such

as the discrete element method (DEM) [13], to develop
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more realistic and predictive numerical models for granular

geomaterials [3, 31, 39, 64].

1.1 Motivation of the proposed framework

Reconstructing particle morphology from discretized pixel

information of X-ray CT images poses three main chal-

lenges. The first challenge is to classify pixel in a raw CT

image into different material constituents or phases (e.g.,

soil particles, voids). Thresholding is a commonly used

method for such a purpose in image processing, which has

been successfully applied to separate objects from the

background [9]. The performance and effectiveness of the

thresholding method, however, is greatly complicated by

various factors, such as the nonstationary and correlated

noise, ambient illumination, busyness of gray levels within

the object and its background, inadequate contrast, and

object size not commensurate with the scene [49]. Granular

geomaterial is typically a composition of various minerals,

organic matters, fluids, and internal voids. Each of the

constituents has its intrinsic X-ray attenuation, leading to a

large variance of pixel intensity in raw CT images [30]. In

addition, the perturbation of tomography environment, the

practical scanning procedure, and the limitation of CT

optical apparatus could bring in significant noises that

further aggravate the intensity variance [50]. As such, there

is oftentimes no clear demarcation between the pixel

intensity of different phases in geomaterials, which makes

phase classification using the thresholding method very

challenging. Some more advanced energy-based tech-

niques for constituents classification, such as the graph cut

and the region-based level set algorithms, are sensitive to

the selection of weights on the various terms in the energy

functional [1]. These weights are usually tuned beforehand

by the developer via trial and error and can only achieve

reasonable results for certain types of images.

The second challenge is to accurately identify particle

boundaries and segregate particles in contact. Several well-

known methods for object segregation include the water-

shed method [39], the concave curvature segmentation

method [28, 61], the edge detection method [19, 59], and

the region growing method [26]. Each of these methods has

its strengths and limitations, and sometimes, several

methods are used in combination to achieve better perfor-

mance. The watershed method is perhaps the most widely

used method but has the over-segmentation issue [40]. Its

performance, to a great extent, depends on well-defined

markers that are typically difficult to determine. The con-

cave curvature segmentation method examines the curva-

ture of the shape boundary and draws segmenting split line

through the split points with a concave curvature, thus to

split the contacting particles at the point of contact [28].

This method requires a prior shape information and might

not be applicable to particles with concave surfaces as it

would mistakenly split a particle if a concave surface is

detected. The edge detection-based method utilizes some

filters, such as the difference of Gaussian or the Laplacian

of Gaussian, to identify object boundaries. These filters

alone usually do not produce definitive object boundaries,

but may provide useful cues to be used in subsequent

algorithms, such as the edge-based level set method

[19, 59]. The edge-based level set method depends upon

well-defined edge indicator, and its performance is sensi-

tive to the initialization and model parameters.

The last challenge is to approach an accurate charac-

terization of the particle shape based on the discretized

pixel matrix of CT images. The marching cubes (MC)

method proposed by Lorensen and Cline [36] is a popular

isosurface algorithm to reconstruct particle surface. How-

ever, in most studies, the MC method operates on binarized

images for surface reconstruction and the reconstructed

surfaces generally have artificial stair steps [62]. Hence,

some smoothing manipulations are necessary to remove the

jagged stair steps [21]. A more accurate approach is to

utilize the edge-based level set method, which is capable of

achieving a sub-pixel accuracy of the object boundary [34].

As aforementioned, the edge-based level set method suffers

from the edge indicator, initialization, and model parameter

issues when handling image segmentation.

In this paper, a novel framework is developed to identify

and reconstruct realistic 3D particle shapes from dis-

cretized pixel information of X-ray CT images. The pro-

posed framework takes a fundamentally different approach

compared to previous works in that a trainable machine

learning technique is innovatively integrated with the edge-

based level set method. The machine learning technique is

utilized to segment raw CT images of granular geomate-

rials, i.e., to classify different constituents and to segregate

particles in contact. In the machine learning process, the

segmentation algorithms are not explicitly programmed.

Instead, the method predicts segmentation results based on

the weighted combination of various image features at

different image scales [29]. The image features and

regression functions are implicitly encoded in the classifier

model and are determined through a training process. The

machine learning-based method, with well-trained classi-

fier model (e.g., the feature weights and regression func-

tions), can provide logical and knowledge-based image

segmentation results comparable to experienced engineers

or to human’s recognition and perception. It has already

brought in some successful applications of image seg-

mentation in the biology and medical areas [7, 51]. Once

the raw images are segmented, edge indicators can be

evaluated from the processed images. A 3D edge-based

level set method is then developed to approach an accurate

shape representation of real particles.
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2 Overview of the framework

Figure 1 shows a schematic illustration of the proposed

framework. In this figure, key components of the

methodology are shown in the top row, and the expected

outputs are listed in the bottom row. The framework starts

with a specimen of granular soil scanned using an X-ray

CT scanner to produce a set of 3D raw CT images. A

machine learning tool termed Trainable Weka Segmenta-

tion (TWS) is then utilized to classify image pixels and

segment particles in contact. The outputs of the TWS-based

segmentation are probability maps showing the probability

of the pixels belonging to a specified class (e.g., solid or

void). Using the probability maps as inputs, a 3D edge-

based level set method is implemented to capture particle

boundaries and reconstruct realistic particles. These parti-

cles can be used for subsequent analysis such as charac-

terizing shapes or particle-size distributions. In the

following sections, the TWS-based segmentation, the level

set method and the particle shape analysis will be presented

in details.

3 Image segmentation by the TWS machine
learning tool

In this section, the Trainable Weka Segmentation (TWS)

[4] is introduced for image segmentation. TWS is a pixel-

based image classification and segmentation tool, where

each pixel in an image is treated as an individual object that

possesses a vector of image features. A combination of

image features is then used to classify a pixel into different

classes. The basic idea of the machine learning-based

approach is to regress the weights of different image fea-

tures through a training process using manual annotations

of image features. The result of the training process is a

trained classifier model that can be applied to segment

other similar image data.

TWS leverages the state-of-the-art machine learning

algorithms provided in the data mining and machine

learning toolkit Waikato Environment for Knowledge

Analysis (Weka) [25]. TWS acts as a bridge between the

image processing and machine learning toolkit, where it

extracts the features of an image (e.g., an X-ray CT image)

and converts them into the format that is expected by the

Weka toolkit. By default, TWS uses random forest (RF) as

the machine learning algorithm. In a recent study by Fer-

nández-Delgado et al. [18], RF is shown to yield best

overall performance and is recommended for new prob-

lems involving machine learning.

3.1 Decision tree and random forest

Random forest is built on an ensemble of decision trees.

Decision trees are a nonparametric supervised learning

method used for classification and regression. The goal is

to create a flowchart-like structure that predicts the out-

come of a target object (e.g., an X-ray image pixel) by

learning simple decision rules inferred from the data fea-

tures (e.g., various image features).

Figure 2 shows an example of a decision tree. In this

example, there are 100 objects taken as training inputs,

where each object possesses 3 features. Forty of the 100

objects are labeled as the foreground objects and 60 of

them are labeled as the background objects. At the first

level of division, the 100 objects are split into two groups

based on the value of their second feature. The selection of

a feature for the division is based on the information

entropy theory [46], and the feature that achieves the most

information gain after the division will be selected.

According to the test results on the second feature, the 100

objects are classified into two groups. For instance, 10 of

the 40 foreground objects fall into the first group as their

second feature is smaller than 0.5, while 30 of them fall

into the second group as their second feature is greater than

0.5. The second and third level of division follows the same

Fig. 1 Schematic illustration of the proposed framework. The top row includes key components of the methodology and the bottom row includes

the expected outputs. TWS Trainable Weka Segmentation
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strategy. Eventually, the 100 objects are classified into

eight groups. For each of the 8 groups, if the foreground

objects are dominating that group, it is considered as a

foreground group and vice versa. The decision tree is

constructed during the training process to determine the

division parameters.

Once the decision tree is constructed, it can be used to

predict the outcome of a new object. A new object will go

through the branches of the decision tree following values

of its features, eventually falling into an end group. The

label of that group is the predicted outcome of the new

object.

A single decision tree has the issue of over-fitting and is

sensitive to the input data. Random forest is an ensemble of

decision trees that can mitigate such disadvantages.

Assuming that a training sample contains N objects and

each object has M features, a decision tree can be con-

structed using a random subset of the N objects with a

random subset of the M features. By repeating this process,

one can obtain a set of decision trees. The prediction of a

new object is based on the overall votes of all decision

trees. Figure 3 shows an example of the random forest and

its prediction strategy.

3.2 Image features

When applying the random forest algorithm to segmenting

X-ray CT images, the objects are image pixels and the

features are image features determined by the user. In this

section, selected image features for segmentation are pre-

sented. Table 1 summarizes various image features

grouped by their purpose that can be included in a classifier

model. In this table, the noise reduction aims to mitigate

the negative impact of intensity noises, e.g., those resulting

from the CT scanning system. The texture filter is used to

extract texture information. The edge indicator is used to

detect object boundaries. Membrane detector is specialized

in identifying membrane-like structures of a certain size

and thickness.

A detailed explanation of different image features can

be found in [4]. Five of the image features from Table 1 are

selected for this study, and they are briefly explained in this

section.

Gaussian blur convolves an image with a Gaussian

kernel distribution. It mitigates the

noise and smooths the image. The

standard deviation controls the shape of

the Gaussian kernel, and a larger

standard deviation increases the blur

effect. Performing Gaussian blur with

n different standard deviations results in

a vector of n Gaussian blur features.

Sobel filter is to approximate the gradient of an

image using a finite difference scheme.

In practice, the Sobel filter is usually

applied after a prior Gaussian blur.

n Gaussian blur gives a vector of

n Sobel filter features.

Hessian calculates the second derivatives of an

image and results in a Hessian matrix at

each pixel. The module, trace,

determinant, first eigenvalue, second

eigenvalue, orientation, Gamma-

normalized square eigenvalue

difference, and the square of Gamma-

normalized eigenvalue difference will

be used as Hessian features. A prior

Gaussian blur is also applied before the

Hessian operation. n Gaussian blur

gives a vector of 8n Hessian features.

Difference of

Gaussians

calculates two Gaussian blur images

from the original image and subtracts

one from the other. Performing

difference of Gaussians with n different

standard deviations gives a vector of

nðn� 1Þ=2 difference of Gaussians

(DoGs) features.

Fig. 2 Example of a decision tree with 3 levels of division. The

features and division parameters are determined during the training

process
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Membrane

projection

first convolves an image with a set of

hardcoded matrix kernel. The original

matrix kernel is in n� n size, with the

middle m columns set as 1s, and the

remaining elements set as 0s. Then, the

matrix kernel is rotated by 6� up to a

total rotation of 180�, giving 30 kernels.

The sum, mean, standard deviation,

median, maximum and minimum of the

30 images are taken as the membrane

projections features. The membrane-

like structures in an image stand out

after membrane projections.

An illustration of combining various images features

into a classifier model is shown in Fig. 4. It should be noted

that including more image features does not necessarily

yield better segmentation results as more features require

more training inputs to achieve a desirable classifier. Also,

more image features in the classifier mean increased

computational expenses. It is found in this work that these

five image features yield satisfactory segmentation results.

3.3 Implementation of TWS for X-CT image
segmentation

In this work, the process of using TWS to segment X-CT

images are implemented in MATLAB. TWS is available as

a plugin of Fiji (https://fiji.sc/). To be able to invoke Fiji

and TWS methods in MATLAB, it is necessary to first

install the Fiji-MATLAB interface MIJ (available from

http://bigwww.epfl.ch/sage/soft/mij/). After installing the

MIJ and adding the corresponding path into the MATLAB

working path, the methods of TWS can be imported and

invoked using MATLAB scripts. The interested reader is

referred to the TWS user manual (available as the sup-

plementary document of [4]) for more details of the TWS

methods.

The workflow of the machine learning-based image

segmentation is summarized in Fig. 5. The workflow

consists of two main components: training classifier and

applying classifier. In the training process, the raw X-CT

images and their corresponding manually labeled images

are required as inputs. The output is a trained classifier,

where the parameters in each decision tree are obtained. By

Fig. 3 Example of a random forest consisting of 3 decision trees (modified from Jaccard [29])

Table 1 Various image features and the corresponding purpose in the classifier model

Image features Purpose

Gaussian blur, bilateral filter, anisotropic diffusion, Kuwahara, Lipschitz Noise reduction

Minimum, maximum, median, variance, entropy, structure tensor Texture filter

Laplacian, Hessian, Sobel filter, difference of Gaussian, Gabor Edge indicator

Membrane projection Membrane detector
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applying the trained classifier to new X-CT images, the

labels of each pixel in the new images can be predicted.

To manually label an image, the values of each pixel are

set to either 1 or 0, indicating whether it belongs to the

constituent the labeled image represents. An example set of

input images is shown in Fig. 6. In this example, the image is

intended to be classified into two phases (e.g., the solid phase

and void phase as it is the case of this work). Two labeled

images are required with one for the solid phase and one for

the void phase. For the labeled image of the solid phase, the

solid pixels are set to 1s, while the remaining pixels are set to

0s. To facilitate the training process and to reduce the

workload of manual labeling, the TWS allows subset pixels

of the raw image to be labeled and used as training inputs.

After input of raw and labeled images, training features are

gathered and the classifier is trained.

After the classifier is trained, the subsequent process is

to apply the trained classifier to segment new CT images.

TWS provides two types of results, i.e., a label matrix and a

probability map. A label matrix consists of integer values

for all pixels in the image, i.e., 1s indicating the pixels

belong to the constituent the label matrix represents, and 0s

indicating otherwise. A probability map is a map of

probability values indicating the likelihood of a pixel

belonging to a particular constituent and will be adopted in

this work. Edge indicators will be evaluated based on the

probability map and will be used for the subsequent level

set method. Also, it is worth noting that though only two

constituents (solid and void) are considered in this work,

the implemented TWS technique is applicable to segment

multiple classes of constituents.

4 The level set method for shape
characterization and reconstruction

The probability maps from machine learning-based image

segmentation are used as inputs for particle shape charac-

terization and reconstruction using the level set method

[42]. In this work, the edge-based level set method is

adopted. The original formulation proposed by Li et al.

[32, 33] is applied to 3D particles, and a new scaling

coefficient is introduced to the edge indicator function. It

should be noted that a 3D version of the Li et al. [33]

formulation has also been previously implemented by Sun

Fig. 4 An illustration of combining various images features into the classifier model in machine learning-based image segmentation process

Fig. 5 The workflow of the X-CT image segmentation via TWS

machine learning technique
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et al. [53, 54], where the authors proposed a semi-implicit

integration scheme and used the level sets to determine the

3D medial axes of pore microstructures.

4.1 Energy functional

The shape (or boundary) of a particle can be characterized

by a closed surface in 3D (or a contour in 2D). The level set

method aims to capture this closed surface using an aux-

iliary function termed the level set function, where the

closed surface is defined as the zero level set, written as

C ¼ fðx; y; zÞ 2 Xj/ðx; y; zÞ ¼ 0g ð1Þ

where / is the level set function; (x, y, z) are the spatial

coordinates; X is the domain of interest and C is the closed

surface (i.e., the boundary of the particle). Conventionally,

the level set function / is assumed to take positive values

inside the region delimited by C and negative values

outside.

When applying the level set method to identify the

particle boundary, the level set function / is evolved by

minimizing an appropriate energy functional, denoted as

Fð/Þ. In this work, the following formulation proposed by

Li et al. [32] is adopted

Fð/Þ ¼ lRð/Þ þ kLð/Þ þ mAð/Þ ð2Þ

where Rð/Þ is the distance regularization term; Lð/Þ and
Að/Þ are the external energy related to the surface cur-

vature and the inner volume, respectively; l[ 0, k[ 0

and m 2 R are the weighting coefficients. A positive m value
drives the surface C inwards, while a negative value drives

C outward. The energy terms are given by

Rð/Þ ¼ 1

2

Z
X
ðjjr/jj � 1Þ2dX ð3Þ

Lð/Þ ¼
Z
X
gðIÞdð/Þjjr/jjdX ð4Þ

Að/Þ ¼
Z
X
gðIÞHð�/ÞdX ð5Þ

where H is the Heaviside function; d is the Dirac delta

function; jj � jj is the Euclidean norm; g(I) is the edge

indicator function defined by

gðIÞ :¼ 1

1þ cjjrIjj2
ð6Þ

where I is the image matrix, and r is the gradient operator.

In this work, a scaling coefficient c is introduced to the

conventional formulation of the edge indicator. In practice,

it is found that this coefficient c can singularize the edge

indicator (as shown in Fig. 7), thus stabilize and facilitate

the convergence of level set evolution.

4.2 Solution of the level set function

Solutions of the level set function can be obtained by

minimizing the energy functional Fð/Þ in Eq. (2) with

respect to /, which leads to the associated Euler–Lagrange

equation for / [6]. Parameterizing the descent direction by

an artificial time, the solution of the level set function /
can be obtained using [32, 33]

o/
ot

¼ � dF
d/

¼ � l
dR
d/

þ k
dL
d/

þ m
dA
d/

� �
ð7Þ

where d½��=d/ denotes the functional derivative of ½�� with
respect to /. The functional derivative of each term in F
with respect to / is evaluated as

dR
d/

¼r � r/�r � r/
jjr/jj

� �
ð8Þ

Fig. 6 An example set of input images for training classifier: a raw image, b the labeled image of the solid phase, and c the labeled image of the

void phase. The pixels rendered by red and green color in the labeled images (b) and (c) are set to 1s, whereas the pixels rendered by the black–

white pattern are set to 0s (color figure online)
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dL
d/

¼dð/Þ rgðIÞ � r/
jjr/jj þ gðIÞ � r r/

jjr/jj

� �� �
ð9Þ

dA
d/

¼gðIÞdð/Þ ð10Þ

To solve the minimization problem defined by Eq. (7), a

forward discretization scheme in time is implemented such

that

/tþ1 ¼ /t � Dt l
dR
d/

þ k
dL
d/

þ m
dA
d/

� �����
t

ð11Þ

where /tþ1 and /t are the level set function / evaluated at

the timestep t þ 1 and t, respectively; Dt is the timestep. As

illustrated in Fig. 8, the evolution of the level set function

/ starts with a given initial value /0 and stops when the

energy functional arrives at a stationary state, which cor-

responds to the surface C represented by / matching the

particle shape boundary.

Solving the level set function also requires the evalua-

tion of spatial derivatives in Eqs. (8–10), in particular, the

evaluation of r/ ¼ ½rx/;ry/;rz/�. In this work, a finite
difference scheme is implemented to discretize the spatial

derivatives, which yields

rx/ði; j; kÞ ¼
/ð2; j; kÞ � /ð1; j; kÞ; if i ¼ 1

/ðiþ 1; j; kÞ � /ði� 1; j; kÞ½ �=2; if i ¼ 2; 3; . . .;Ni � 1

/ðNi; j; kÞ � /ðNi � 1; j; kÞ; if i ¼ Ni

8><
>:

ð12Þ

ry/ði; j; kÞ ¼
/ði; 2; kÞ � /ði; 1; kÞ; if j ¼ 1

/ði; jþ 1; kÞ � /ði; j� 1; kÞ½ �=2; if j ¼ 2; 3; . . .;Nj � 1

/ði;Nj; kÞ � /ði;Nj � 1; kÞ; if j ¼ Nj

8><
>:

ð13Þ

rz/ði; j; kÞ ¼
/ði; j; 2Þ � /ði; j; 1Þ; if k ¼ 1

/ði; j; k þ 1Þ � /ði; j; k � 1Þ½ �=2; if k ¼ 2; 3; . . .;Nk � 1

/ði; j;NkÞ � /ði; j;Nk � 1Þ; if k ¼ Nk

8><
>:

ð14Þ

where i, j, and k indicate the pixel index for each dimension

in the image matrix; Ni, Nj and Nk; are the dimension sizes,

i.e., the total number of pixels in that dimension.
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Fig. 7 A demonstration of the edge indicator with different scaling coefficients: a c ¼ 1, b c ¼ 10, and c c ¼ 100. The histograms indicate the

distribution of the edge indicator values, and the inset represents the corresponding edge indicator image (color figure online)
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The Dirac delta function dð/Þ in Eqs. (9) and (10) is

approximated by the following regularized function d�ð/Þ
as

d�ð/Þ ¼
1

2�
1þ cos

p/
�

� �� �
; if j/j � �

0; if j/j[ �

8<
: ð15Þ

where � is the regularization coefficient; j � j indicates the

absolution value. The regularized d�ð/Þ will converge to

dð/Þ as � approaches 0.
By minimizing the energy functional, the zeroth iso-

surface of the level set function eventually approximates

the surface of a particle. The marching cubes method can

be used to reconstruct the zeroth isosurface from the level

set matrix, which returns a triangle mesh representing the

particle surface.

5 Particle morphology descriptors

Once particles are reconstructed using the level set method,

various quantitative descriptors can be calculated to char-

acterize the particle morphology. The three commonly

used descriptors are the aspect ratio, sphericity, and

roundness. The definition and calculation of these

descriptors are presented in this section, while results of

morphology analysis on the granular soil of interest are

presented in Sect. 6.

5.1 Aspect ratio

The aspect ratio of a particle is the ratio of its sizes in

different dimensions. It characterizes the elongation extent

of a particle. A 3D particle possesses two independent

aspect ratios. Standard practice assigns L to the longest

dimension, with I being the longest dimension perpendic-

ular to L and S being perpendicular to both L and I. The

aspect ratios are calculated as the ratios between L, I and S.

However, as pointed out by Blott and Pye [8], such defi-

nitions cannot give an appropriate description of certain

shapes (e.g., cubes). An alternative is to use the Feret

diameters to characterize the size of a particle along

specific dimensions [17, 27]. There are infinite sets of Feret

diameters for a given geometric shape. In this work, the

three Feret diameters corresponding to the three principal

axes are adopted. With the three Feret diameters denoted as

D1, D2, and D3, the aspect ratios are calculated as

a21 ¼
D2

D1

ð16Þ

a31 ¼
D3

D1

ð17Þ

where a21 is the aspect ratio of the medium Feret diameter

(D2) to the major Feret diameter (D1); a31 is the aspect ratio

of the minor Feret diameter (D3) to the major Feret

diameter (D1). To evaluate the Feret diameters, the

moment of inertia tensor is firstly calculated. A rotation

matrix is obtained by converting the moment of inertia

tensor to a diagonal matrix. The rotation matrix defines the

directions of the principal axes of the particle. Then, the

particle is rotated by multiplying the rotation matrix, so

that the principal axes of the particle are aligned with the

Cartesian coordinate axes. Finally, the range of the coor-

dinates of all the vertexes on the particle surface would be

the Feret diameters in each direction, respectively.

5.2 Sphericity

The sphericity describes the degree to which a 3D particle

shape resembles a mathematically perfect sphere. This

work adopts the 3D sphericity definition proposed by

Wadell [60]

S ¼
36pV2

p

� �1=3

Ap

ð18Þ

where S is the sphericity; Vp and Ap are the volume and

surface area of the given particle, respectively.

5.3 Roundness

The definition or calculation of roundness is subjected to

the most controversy. Most authors have accepted that

roundness should refer to the relative sharpness of corners

and edges of a particle rather than to the degree to which

the overall outline of a particle approaches circularity (or

sphericity in three dimensions). Wadell [60] first defined

the 2D roundness as the average ratio of the curvature

radius of all corners to the radius of the largest inscribed

circle of a particle. Following the same logic, Zhou et al.

[67] defined the 3D roundness, which is adopted in this

work.

R ¼ RgðkÞjkmaxj�1

NRins

ð19Þ

where R denotes the roundness; N is the total number of

acceptable corners; Rins is the radius of the maximum

inscribed sphere of the particle; kmax is the maximum

curvature at a corner; and g(k) is a function indicates

whether a corner is acceptable or not, defined as

gðkÞ ¼ 1 if jkmaxj�1\Rins

0 if jkmaxj�1 �Rins

(
ð20Þ
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In this work, the radius of the maximum inscribed

sphere Rins is approximated by the minimum radial dis-

tance of all vertexes on the particle surface to the particle

centroid. The practical approach proposed by Colombo

et al. [11] is adopted to evaluate the local principal cur-

vatures at the corners of a particle. The interested reader is

referred to [11, 67] for more details about the calculation.

6 Results and discussion

In this section, the proposed framework is applied to

characterize and reconstruct 3D irregularly shaped particles

from X-ray CT images of a particular granular material, the

Mojave Mars Simulant (MMS). MMS is a Martian regolith

simulant developed using a basalt mined in the western

Mojave Desert and is among the suite of test rocks and

soils that were used in the development of the 2007–2008

Phoenix Scout and the 2009 Mars Science Laboratory

missions [44]. The type of MMS used in this study has

particle sizes mainly ranging from 1 to 2 mm. The MMS

sample is placed in a cylindrical container of 30 mm in

diameter and 114 mm in length. An MILabs U-CT system

with a resolution of 60 microns is used to obtain the raw

CT image data, which yields a total of 500� 500� 1900

3D pixels data. To visualize the raw CT image data, the

pixels are grouped into 1900 slices, each being an image of

500� 500 pixels. Selected images from the middle are

used to demonstrate the proposed framework.

6.1 Results by the proposed framework

To begin with, the classifier in the machine learning

method is determined through a training process. In this

process, TWS takes a raw X-ray CT image and two training

images with labeled pixels as inputs, shown in Fig. 9. It

should be pointed out that the performance of TWS

depends on the quality of the training images. One can

repeatedly amend the training images until satisfied with

the classification results. The settings for TWS used in this

study are summarized in Table 2.

The next process is to apply the trained classifier to the

remaining raw X-ray CT images. For batch processing, this

process is implemented in MATLAB through the Fiji-

MATLAB interface MIJ, as described in Sect. 3. Figure 10

shows an example of the raw and TWS-processed images.

As shown in Fig. 10b, the TWS-processed images are

valued by the probability indicating the likelihood of a

pixel belonging to a designated phase (i.e., the solid phase

in this study). The probability map will then be used as

inputs for level set-based shape reconstruction. The per-

formance of level set method relies heavily on well-defined

edge indicators. In practice, it is found that, by applying a

prior TWS process, the resultant probability map can

provide better edge indicators than the raw X-ray CT

image. The corresponding edge indicator map of the

example CT image is shown in Fig. 10c.

Table 3 summarizes the level set parameters used in this

study. The energy coefficients l, k and m, and the regu-

larization coefficient � are selected following the previous

application and recommendation by Li et al. [32]. The

scaling coefficient c in the edge indicator equation Eq. (6)

is chosen such that the edge indicator values are scaled

between 0 and 1. To obtain the initial level set for a particle

to be reconstructed, one option is to adopt the ‘‘erosion and

labeling’’ morphological image processing method, where

pixels with the same label after the erosion process are

considered to belong to the same particle and could be used

as the initial level set. However, it is found that this option

cannot provide good results for images with complex fea-

tures as those of MMS considered in this work. Thus, the

other option is to label a cuboid inside a particle manually.

The cuboid is taken as the initial level set and gradually

Fig. 9 Raw and training X-ray CT images: a the raw image, b the first training image with labeled solid phase (solid pixels are highlighted in

red), and c the second training image with labeled void phase (void pixels are highlighted in green) (color figure online)
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expands toward the particle boundary as level set evolves.

An illustration of the surface evolution of one particle by

the edge-based level set method is shown in Fig. 11. The

final 3D surface indicates the surface of the reconstructed

particle.

The level set process is applied to all particles in the

processed CT images. In this work, the particle shape is

represented and visualized using the surface triangle mesh,

which is built upon the level set matrices using the

marching cubes method [36]. There are other methods to

Table 3 Level set parameters used in the present study

Dt l k m � c

1 0.2 5.0 1.5 0.5 100

Fig. 11 An illustration of the surface evolution of one particle by the edge-based level set method at the 100th, 200th, 300th, 400th, and 500th

iterations. The 2D image, colored by the probability values evaluated by the TWS method, shows the part of the CT image containing the target

particle to be constructed. The final 3D surface indicates the surface of the reconstructed particle (color figure online)

Table 2 Settings for TWS used in the present study

Entry/feature Parameter Value

Gaussian blur Standard deviation 1, 2, 4, 8, 16

Sobel filter Standard deviation 1, 2, 4, 8, 16

Hessian Standard deviation 1, 2, 4, 8, 16

Difference of Gaussian Standard deviation 1, 2, 4, 8, 16

Membrane parameters Thickness 1

Patch size 19

Random forest No. of decision trees 200

No. of random features per tree 2

0
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0.6

0.8

1

0

0.2

0.4
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1

(a) (b) (c)

Fig. 10 Example of a the raw X-ray CT image, b the probability map, and c the corresponding edge indicator calculated based on the processed

image. The scaling coefficient for the edge indicator is c ¼ 100
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represent a complex geometry, such as the orthogonal

decomposition, Fourier descriptor [37], and the non-uni-

form rational basis spline [3]. Figure 12 presents one layer

of the reconstructed 3D particles and the zoom-in view of

several particles. It can be seen that particles of different

sizes are successfully reconstructed. Some of the particles

are relatively round, whereas others exhibit pretty sharp

edges. The roughness of the particle surface is also well

preserved, and some concave pits are captured on the

particle surface. Quantitative shape and size analysis on the

reconstructed particles will be presented in the following

sections.

6.2 Accuracy analysis and validation

To evaluate the performance of the proposed framework,

accuracy analysis is conducted in this section. The same

analysis is also conducted for a watershed-based method as

a comparison. As an additional validation, the size distri-

bution of the reconstructed particles is compared to that

obtained from a laboratory sieve analysis.

6.2.1 Definitions of accuracy

Before defining the accuracy, a reference solution of image

segmentation is required. In this work, a manually labeled

image is taken as the reference solution (i.e., the ground

truth). To manually label the image, the particle boundary

is carefully traced using the magnetic lasso tool in Adobe

Photoshop. After that, the region inside the boundary is

colored using the paint bucket tool. This process is repe-

ated until all particles are identified and painted in different

colors. It should be pointed out that the manually labeled

particle shape might still deviate slightly from its real

shape due to human error. Such deviation, however, is only

a couple of pixels and would be acceptable considering that

the particle sizes are of 25 pixels on average in each

dimension.

This study considers two types of accuracy: pixel-based

classification accuracy and particle-based segmentation

accuracy. The pixel-based classification accuracy indicates

the possibility that a pixel is classified into the correct

phase (i.e., solid phase and void phase in this work). To

quantify it, the pixel accuracy index and random accuracy

index proposed by Arganda-Carreras et al. [5] are adopted.

In particular, the joint probability pij is first defined as the

probability that a randomly chosen pixel belongs to phase i

in S and phase j in T, where S denotes the predicted clas-

sification and T denotes the reference solution. Then, the

pixel accuracy index Vpixel and the random accuracy index

Vrand are calculated as

Vpixel ¼ pii ð21Þ

Vrand ¼
Rijp

2
ij

aRks
2
k þ ð1� aÞRkt

2
k

ð22Þ

where si ¼ Rjpij and tj ¼ Ripij, which is the probability of a

randomly selected pixel belonging to phase i or j, respec-

tively; a is a parameter indicating the weights of split and

merge errors. By definition, Vpixel indicates how many

pixels are correctly classified. Vrand quantifies the proba-

bility that two randomly chosen pixels belong to the same

phase in both predicted classification S and reference T.

Vrand should be close to one if S and T are similar. It should

be noted that other indices have also been proposed and

used for accuracy or error analysis. For instance, Semnani

and Borja [48] used three measures to compare a simulated

image with the true image: variograms, pixel-wise error

histograms and visual comparisons, where continuous

variables (i.e., gray values) are used as opposed to cate-

gorical variables (i.e., individual phases) adopted in the

current study.

To evaluate the particle-based segmentation accuracy,

the number of correctly identified particles are counted. As

a particle consists of hundreds of pixels, in this study, a

particle is considered to be correctly identified if more than

Fig. 12 Showcases of a one layer of the reconstructed 3D particles, and b zoom-in views of several particles. Particles in (a) are rendered with

different colors for better visualization
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90% of its pixels are correctly predicted and grouped to the

same particle. The 10% tolerance is set to account for the

slight errors in manually labeling a particle and the

acceptable tolerance in the reconstructed particle shapes. It

is worth noting that, for the accuracy analysis, we are

focusing on just one slice of the CT images as a demon-

stration. The particle shape reconstructed using the pro-

posed framework is indeed three-dimensional, but only a

cross-section of the shape is extracted and compared to the

reference solution.

6.2.2 Compare with the watershed-based method

Watershed [58] is a common tool for image segmentation.

Segmentation by the watershed method requires meaning-

ful local extrema to initiate the watershed and an appro-

priate threshold to stop the watershed. Otherwise, the

watershed process can result in serious over-segmentation.

Some variants of the original watershed method have been

proposed, aiming to mitigate the over-segmentation issue

[39, 63]. The particular implementation of watershed

method used in this work for the comparison is the inter-

active H-watershed [35], which is available as a plugin in

Fiji. The interactive H-watershed consists of a threshold

process to classify phases and a watershed process to

segment objects. In the watershed process, it employs the

so-called H-extrema as the local extrema to initiate the

watershed, where the H-extrema are known to be robust to

noise. The interactive H-watershed also provides an inter-

active way to explore local extrema and threshold, updat-

ing the resulting watershed on the fly.

The pixel-based classification accuracy of the interactive

H-watershed is controlled by the threshold parameter.

Histograms of pixel values for the raw CT image and the

corresponding TWS-processed image are plotted in Fig. 13.

Two peaks are observed in the histogram of the raw CT

image (Fig. 13a), corresponding to the void phase and the

solid phase, respectively. The distribution of pixel intensity

can be approximated by two normal distributions, and it

can be seen in Fig. 13a that the two distributions repre-

senting the void phase and the solid phase would have large

areas of overlap. In this case, it becomes critical to deter-

mine a single threshold to classify the void phase and solid

phase. A small change in the threshold value would result

in significant changes in the resulting fraction of the void

phase and the solid phase.

In the proposed TWS-based segmentation, the material

phases are determined using both the pixel intensity values

and various image features (e.g., those listed in Table 1).

After the TWS process, each pixel is given a probability

value indicating its likelihood to be a designated phase

(e.g., the solid phase). The histogram of probability values

of the corresponding TWS-processed image is shown in

Fig. 13b. It is observed that the two peaks representing the

void and solid phases are more separated apart. Such a

profile indicates that most of the pixels can be classified

with great confidence, leaving only a small portion of the

pixels (i.e., those with probability values around 0.5) with

lower confidence.

To illustrate the influence of the assumed threshold

values, different threshold values are applied and the

accuracy of the interactive H-watershed is summarized in

Table 4. In TWS, pixels with a probability value greater

than 0.5 (i.e., voted as the solid phase in the random forest

process) are classified as the solid phase. With a reasonable

choice of a threshold value, the interactive H-watershed

method can achieve a good performance that is comparable

with the TWS. However, as it will be shown later, a rea-

sonable choice of threshold values does not assure good

particle segmentation. A significant limitation with the

thresholding is that it cannot resolve the noises existed in

the void phase or solid phase. TWS, on the other hand, has

shown to be much more effective when applied to low-

resolution images with noise [38].
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Fig. 13 Histograms of a a raw CT image, and b the corresponding TWS-processed image
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For the second type of accuracy, i.e., the particle-based

segmentation accuracy, the interactive H-watershed mainly

relies on the parameter called the H-extrema seed. Large

seed values can help suppress local extreme used to ini-

tialize the watershed, thus minimizing the over-segmenta-

tion issue. However, an optimal choice of the seed

parameter is problem dependent. The performances of the

interactive H-watershed with different H-extrema seeds are

investigated in this study. Table 5 summarizes the number

of correctly segmented particles using the interactive

H-watershed and the proposed TWS-LS method. For the

interactive H-watershed, the number of correct particles

significantly depends on the choice of the seed parameter.

With regard to the particle-based segmentation accuracy,

the TWS-LS shows superior performance. It is worth not-

ing that, even if the TWS-LS cannot correctly reconstruct

all the particles (i.e., reaching 100% accuracy), there will

be statistically enough particles for the purpose of mor-

phology characterization and particle-size distribution

calculations.

To visualize the particle-based segmentation accuracy,

the correctly and incorrectly segmented particles are shown

in Fig. 14. In these figures, the incorrect particles are

plotted as hollow shapes. For TWS-LS, most of the

incorrect particles are the particles of smaller sizes. As

aforementioned, this is partially due to the relatively

insufficient CT resolution to resolve fine particles. For the

interactive H-watershed, the incorrect particles have a wide

size range, most of which are results from the issue of over-

segmentation.

6.2.3 Validation with laboratory sieve analysis

In the laboratory sieve analysis, the following sieves in the

Unified Soil Classification System are used: No. 4, 10, 20,

40, 60, 100, and 200. Based on the extracted particle shapes

from CT image analysis, the particle sizes can be estimated

as the diameter of their equivalent sphere (e.g., a sphere of

the same volume). The particle-size distribution (PSD)

curves obtained from the laboratory and the proposed

TWS-LS framework are shown in Fig. 15. A reasonably

good agreement is shown between the two curves. The

PSD obtained from the proposed framework is slightly

shifted to the left. Also, there is some discrepancy observed

in particle sizes smaller than 0.5 mm. Those smaller par-

ticles are missing in the PSD obtained from the X-ray CT

images as the resolution of the X-ray CT scanner cannot

capture those very fine particles.

6.3 Particle morphology analysis

Having the particles fully reconstructed in 3D, quantitative

morphology analyses are conducted using the morphology

descriptor defined in Sect. 5. Figure 16 showcases the

calculated morphology of several example 3D particles.

Among these examples, the top-left particle is more elon-

gated in one direction, corresponding to smaller values of

aspect ratio (a21 and a31). By comparison, the bottom-right

particle has similar size in each direction, which results in

larger values aspect ratio. It is also observed that the par-

ticles with more angular corners have smaller values of

sphericity (S) and roundness (R), as is the case for the three

particles in the bottom row.

To provide a statistical description of the particle mor-

phology, the histogram of the aspect ratio, sphericity, and

roundness from the reconstructed particles are plotted in

Fig. 17. It is found that these descriptors can be roughly

approximated by normal distributions. In this regard, their

mean values and standard deviations are summarized in

Table 6. As a comparison, the mean sphericity and

roundness of the Leighton Buzzard sand are reported to be

about 0.92 and 0.65 [67]. Leighton Buzzard sand is an

English sand commonly used for academic research. It can

be seen that the MMS particles, made from crashes of

Saddleback Basalt, is more irregular than the Leighton

Buzzard sand.

To classify the roundness grades of the MMS sample,

the cumulative distribution of the roundness values by

volume is displayed in Fig. 18. The Powers classification

[45] of roundness is also shown. Results indicate that there

are about 4% well-rounded particles, 95% rounded parti-

cles, and less than 1% subrounded particles, following the

roundness grade table of Powers [45]. The detailed mor-

phology analysis presented in this section is not possible

Table 4 Pixel-based classification accuracy: interactive H-watershed

versus TWS-LS

Method Vpixel Vrand

TWS-LS 0.86 0.76

Interactive H-watershed

Threshold = 0.3 0.85 0.75

Threshold = 0.4 0.89 0.81

Threshold = 0.5 0.84 0.74

Table 5 Particle-based segmentation accuracy: interactive H-water-

shed versus TWS-LS

Method Correct particles Percent

TWS-LS 234 77.7

Interactive H-watershed

Seed = 20 188 62.5

Seed = 25 163 54.2

Seed = 30 144 47.8
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without the reconstructed particles using the proposed

framework and the analysis can provide important insights

into the microscopic features of the granular material.

7 Summary

In this work, a novel machine learning and level set-based

framework is proposed to segment X-ray CT images of

granular geomaterials and to reconstruct realistic 3D par-

ticle shapes. X-ray CT images of the Mojave Martian

Simulant (MMS) show that the intensity of various con-

stituents exhibit significant variance, and there is no clear

demarcation between the solid and the void phases, making

it particularly challenging for conventional binarization

watershed-based methods.

To address this challenge, a feature-based machine

learning technique termed the Trainable Weka Segmenta-

tion (TWS) is implemented and utilized to segment X-ray

CT images. This is a fundamentally different approach in

that it predicts segmentation results based on a trained

classifier model that implicitly includes image features and

regression functions. Probability maps indicating the like-

lihood of pixels belonging to a particular phase are

obtained from the segmentation process, in which the

original intensity contrast feature is to the most extent

preserved. Compared to the intensity values of a raw CT

image, it is found that the probability values exhibit much

less variance and have a more distinct demarcation

between different material phases. The probability map

provides excellent edge indicators that can be used as the

basis for the subsequent edge-based level set method.

Using the segmented X-ray CT images (i.e., probability

maps), a 3D edge-based level set method is implemented to

approach an accurate shape representation of real particles.

Realistic 3D particles of the MMS are successfully

reconstructed from raw CT images. Quantitative accuracy

analyses are performed for the proposed framework and a

conventional watershed method. The analyses show that

the proposed framework has superior performance in both

pixel-based classification accuracy and particle-based seg-

mentation accuracy. The particle-size distribution using the

Fig. 16 Morphology of several example 3D particles

Fig. 14 Visual comparison of segmentation accuracy of the interactive H-watershed and the proposed TWS-LS method. Incorrectly identified

particles are plotted as hollow shapes. a Ground truth, b TWS-LS, c interactive H-watershed
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reconstructed particles are also validated and compared

well with results from a lab sieve analysis. In addition, the

morphological features, e.g., sphericity, roundness, and

roughness, of real particle shapes are well captured.

Quantitative particle morphology analyses are performed

to provide more insights into the morphological features of

the granular material.

The machine learning technique has shown great

potentials in segmenting CT images of geomaterials with

complex constituents. Future work will expand the capa-

bility and application of machine learning-based particle

identification. An immediate step would be to promote the

current 2D TWS into the 3D regime, where image features

from the third dimension are included in the segmentation

process synchronously. Another interesting and important

issue would be the effect of the quantity and quality of the

training sets on the accuracy of the segmentation results. It

Fig. 18 Particle roundness distribution of the MMS sample with the

Powers [45] classification

Table 6 Statistics of the morphology descriptors of MMS soil

particles

Descriptors Mean Standard

Aspect ratio a21 0.78 0.11

Aspect ratio a31 0.61 0.11

Sphericity S 0.84 0.04

Roundness R 0.64 0.05
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Fig. 17 Histogram and fitted distribution of the morphology descriptors of MMS soil particles: a aspect ratio a21, b aspect ratio a31, c sphericity
and d roundness
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is also noticed that there are several competing machine

learning-based image segmentation algorithms. It would be

interesting to explore alternative methods and compare

their performances when applied to granular geomaterials.

Finally, the closed surface reconstructed by the edge-based

level set method can be readily used for shape analysis and

in a subsequent numerical model (e.g., the discrete element

model) development.
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