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Background and purpose: Immunohistochemical epidermal growth factor receptor (EGFR) expression
does not correlate with treatment response in head and neck squamous cell carcinomas (HNSCC). Aim
was to apply the tracer 111In-cetuximab-F(ab’)2 for EGFR microSPECT imaging and to investigate if tracer
uptake correlated with response to EGFR-inhibition by cetuximab in HNSCC xenografts. Usage of F(ab)2

fragments allows for shorter interval between tracer injection and imaging.
Materials and methods: Mice with HNSCC xenografts, SCCNij202, 153, 185 and 167 were imaged with mic-
roSPECT using 111In-cetuximab-F(ab’)2. Subsequently, tumors were analyzed by autoradiography and
immunohistochemistry and tracer concentration was determined. Tumor uptake was correlated with
previously assessed response to cetuximab treatment.
Results: MicroSPECT imaging showed preferential uptake in HNSCC xenografts. Tumor-to-liver ratios
were 3.1 ± 0.2 (SCCNij202), 2.8 ± 0.4 (SCCNij153), 2.0 ± 0.8 (SCCNij185), 2.0 ± 0.4 (SCCNij167). Immuno-
histochemical EGFR fractions (fEGFR) differed significantly between xenografts; 0.77 ± 0.07 (SCCNij202),
0.66 ± 0.11 (SCCNij153), 0.57 ± 0.19 (SCCNij185), 0.16 ± 0.10 (SCCNij167) (p < 0.001). Tumor fEGFR corre-
lated with 111In-cetuximab-F(ab’)2 tumor uptake (r = 0.6, p < 0.01) and tracer autoradiography (r = 0.7,
p < 0.0001). Tumor uptake of 111In-cetuximab-F(ab’)2 was proportionally associated with cetuximab
treatment response in three out of four xenograft models.
Conclusion: 111In-cetuximab-F(ab’)2 showed good tumor-to-background contrast on microSPECT imag-
ing, allowing noninvasive assessment of EGFR expression in vivo, and possibly evaluation of treatment
response to EGFR-inhibition.

� 2013 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 108 (2013) 484–488
The epidermal growth factor receptor (EGFR) is overexpressed
in the majority of head and neck squamous cell carcinomas
(HNSCC) and denotes a poor clinical outcome [1]. Elevated EGFR
expression has been related to radiation resistance due to its influ-
ence on microenvironmental factors such as tumor oxygenation
status, DNA repair processes and proliferation [2–5]. Supplement-
ing radiotherapy with the EGFR-inhibitor cetuximab has resulted
in improved locoregional control and overall survival, though it is
effective in only a subset of the patients [6]. So far, no conclusive
predictive marker for response to cetuximab has been identified
in HNSCC [7–15].

Immunohistochemical determination of EGFR expression in tu-
mor biopsies from patients does not correlate with treatment re-
sponse [16,17], in part potentially due to tumor heterogeneity on
a macro- and microscopic level. Also, tumor physiological factors
such as vascular permeability, blood perfusion, interstitial fluid
pressure and necrosis may explain the absence of this correlation
[18,19]; a high expression of EGFR on immunohistochemistry does
not denote accessibility of EGFR to inhibitors. Receptor imaging
with tracers that are administered systemically allows noninvasive
visualization of the entire tumor and renders the possibility of
monitoring therapeutic effects. Previously, cetuximab has been la-
beled with 111Indium (111In) [20]. The use of radiolabeled cetux-
imab-F(ab)2 fragments may allow earlier imaging due to faster
clearance kinetics, resulting in a high tumor-to-background con-
trast at earlier time points. This study evaluated the potential of
111In-cetuximab-F(ab’)2 to determine EGFR expression in tumors
noninvasively. We analyzed the association between tumor tracer
uptake and the treatment responses of the same HNSCC xenograft
models we reported earlier [15].

Materials and methods

Tumor models

Six to eight week old athymic BALB/c nu/nu mice were xeno-
grafted subcutaneously (s.c.) in the right hind leg with the human
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HNSCC lines SCCNij202, 153, 185 or 167. Tumors with a mean vol-
ume of 191 ± 28 mm3 were used in the experiments. Animals were
housed in filter-topped cages in a specific-pathogen-free unit in
accordance with institutional guidelines. The Animal Welfare Com-
mittee of the Radboud University Medical Center Nijmegen
approved the animal experiments.
Tracer synthesis, experimental design and image acquisition

Cetuximab-F(ab’)2 was produced from the intact IgG monoclo-
nal antibody cetuximab (�150 kDa) by pepsin digestion. After
labeling with 111In labeling purity and efficiency were determined
as described previously, with minor modifications [21].

For biodistribution studies, ten mice per tumor model were in-
jected i.v. with 5 lg 111In-cetuximab-F(ab’)2 (0.78 ± 0.33 MBq) of
which five control mice received an EGFR blocking dose (1000 lg
of cetuximab) 3 days prior to tracer injection. For imaging studies,
six mice were injected with 5 lg 111In-cetuximab-F(ab’)2

(21.4 ± 6.4 MBq). A control mouse excess of unlabeled cetuximab
was used to determine non-EGFR mediated uptake of 111In-cetux-
imab-F(ab’)2. Images were acquired 24 h p.i. using an ultra high-
resolution animal SPECT/CT scanner (U-SPECT-II; MILabs, Utrecht,
the Netherlands). Mice were scanned in prone position under gen-
eral anesthesia (isoflurane/N2O) using the 1.0-mm diameter multi-
pinhole collimator tube. SPECT scans were acquired for 60 min,
followed by CT scans.

Mice were euthanized 24 h after tracer injection and tissue
samples of relevant tissues were harvested, weighed and radioac-
Fig. 1. 111In-cetuximab-F(ab’)2 uptake measured by autoradiography (A), immunohistoch
between autoradiography and immunohistochemistry per xenograft model (n = 4 per gr
tivity uptake was determined in a c-counter. Activity concentra-
tions were calculated and corrected for radioactive decay, and
expressed as percentage of injected dose per gram tissue (%ID/g).

Scans were reconstructed with MILabs software, using an or-
dered-subset expectation maximization algorithm with a voxel
size of 0.375 mm. Tumor-to-liver uptake ratios were determined
by drawing regions of interest (ROIs) around the tumor and in
the liver (Inveon Research Workplace software version 3.0, Sie-
mens Preclinical Solutions); mean pixel values were established
by thresholding at 40% of maximum pixel value within tumor ROIs.

Autoradiography

Intratumoral distribution of the radiolabeled antibody frag-
ments was determined by autoradiography. Tumors from mice in-
jected with 111In-cetuximab-F(ab’)2 were dissected and
immediately snap-frozen in liquid nitrogen. Autoradiography was
performed as described previously [22]. Briefly, 5 lm sections
were exposed to a Fujifilm BAS cassette 2025 overnight (Fuji Photo
Film, Tokyo, Japan) and scanned using a Fuji BAS-1800 II bioimag-
ing analyzer at a pixel size of 50 � 50 lm. Images were processed
with Aida Image Analyzer software (Raytest, Staubenhardt,
Germany).

Immunohistochemical staining and analysis

Following autoradiography, the same sections were fixed in
acetone (4 �C for 10 min). For detection of EGFR expression, goat
emical staining of EGFR (red) and vessels (blue) (B) and the correlation coefficients
oup) (C).



Fig. 2. Assessment of 111In-cetuximab-F(ab’)2 microSPECT uptake correlated to
ex vivo biodistribution studies (r = 0.64, p < 0.01) (A) and fraction EGFR staining in
tumor sections (fEGFR) (r = 0.61, p < 0.05) (B) (n = 16). T/L = tumor-to-liver-ratio.
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anti-EGFR antibody (Santa Cruz Biotechnology Inc., Santa Cruz, CA,
USA), followed by donkey anti-goat Cy3 (Jackson Immunoresearch,
West Grove, PA, USA) was used. For visualization of the vascula-
ture, undiluted rat anti-mouse endothelium 9F1 [20] was followed
by incubation with chicken anti-rat-Alexa647 (Molecular Probes,
Bleiswijk, The Netherlands).

Tumor sections were analyzed using a digital image analysis
system, as described previously [23]. Briefly, tumor sections were
scanned and grayscale images (pixel size, 2.59 � 2.59 lm) for ves-
sels and EGFR were obtained and subsequently converted into bin-
ary images. Binary images were used to calculate the fraction of
EGFR (fEGFR) relative to the total viable tumor area. Areas of necro-
sis were excluded from analysis.

Co-localization analysis

The autoradiography and immunohistochemistry gray-value
images (grayscale range 0–255) were overlaid using Photoshop
(CS4, version 11.0.2, San Jose, USA). The pixel and figure size of
the immunohistochemistry images were bicubically rescaled to
match those of the autoradiographic images for alignment
(50 � 50 lm) and were successively upscaled (200 � 200 lm) to
compensate for image co-registration errors and scattering of the
tracer signal in the autoradiography images. After alignment, areas
of necrosis in immunohistochemical analysis were masked in auto-
radiography images. Co-registered pixel gray-values and overlap
coefficients were determined with ImageJ (version 1.43 m, JAVA-
based image-processing package) using the JACoP plugin package.

Statistics

Statistical analyses were performed using Prism software ver-
sion 4.0c (Graphpad, San Diego, USA). The Spearman, Pearson or
ANOVA test was used to assess correlations between different
parameters. Differences in uptake of the tracers were tested for sig-
nificance using the nonparametric Mann–Whitney test. p-val-
ues 6 0.05 were considered significant. Data are represented as
mean ± standard deviation.

Results

The 111In-cetuximab-F(ab’)2 tracer showed specific accumula-
tion in EGFR expressing HNSCC xenografts: 5.7 ± 1.1%ID/g
(SCCNij202), 7.5 ± 2.2%ID/g (SCCNij153), 2.7 ± 0.3%ID/g
(SCCNij185), 2.2 ± 0.7%ID/g (SCCNij167) compared to mice receiv-
ing a blocking dose (1.7 ± 0.6%ID/g). Uptake in normal organs was
similar for all four SCCNij models (Supplemental Table 1). Due to
the rapid blood clearance a good tumor-to-blood contrast in all
four HNSCC xenografts was achieved; SCCNij202: 14.1 ± 5.3;
SCCNij153: 17.6 ± 5.6; SCCNij185: 6.2 ± 2.0; SCCNij167: 5.0 ± 1.7.

Immunohistochemical EGFR fractions differed significantly be-
tween the four xenograft models: SCCNij202: 0.77 ± 0.07;
SCCNij153: 0.66 ± 0.11; SCCNij185: 0.57 ± 0.19; SCCNij167:
0.16 ± 0.10 (p < 0.001). For all tumors, autoradiography tracer loca-
tion correlated statistically significantly with EGFR expression
(r = 0.68, 95% confidence interval 0.68–0.70, p < 0.0001) (Fig. 1).

Tumor uptake of 111In-cetuximab-F(ab’)2, quantified on micro-
SPECT by tumor-to-liver-ratios correlated significantly with
ex vivo activity uptake measurements (r = 0.64, p < 0.01) (Fig. 2A)
and with fEGFR (r = 0.61, p < 0.05) (Fig. 2B). MicroSPECT images
clearly showed preferential uptake in the tumor as evidenced by
the tumor-to-liver ratios; 3.1 ± 0.2 (SCCNij202), 2.8 ± 0.4
(SCCNij153), 2.0 ± 0.8 (SCCNij185), 2.0 ± 0.4 (SCCNij167) (Fig. 3).
In a previous study from our institution [15], SCCNij202 demon-
strated the best growth-delay response to cetuximab. Here,
SCCNij202 showed the highest tumor uptake of 111In-cetuximab-
F(ab’)2, whereas the non-responder in the previous study
(SCCNij167) displayed the lowest tracer uptake. SCCNij185 and
SCCNij153 were moderate- to non-responders, while 111In-cetux-
imab-F(ab’)2 uptake was low for SCCNij185 and high for
SCCNij153.

Discussion

In this study, microSPECT images showed accumulation of
111In-cetuximab-F(ab’)2 in all four HNSCC xenograft models and
good tumor-to-background contrast as early as 24 h p.i. due to
the rapid clearance from the background. EGFR fractions as deter-
mined immunohistochemically differed significantly between the
four xenografts models and correlated with 111In-cetuximab-
F(ab’)2 uptake as measured by autoradiography and microSPECT
scans. Previous preclinical studies have not shown a clear correla-
tion between EGFR expression and cetuximab-tracer uptake when
applying the whole IgG antibody [24–27]. One possible reason for
this discrepancy could be that in the present study we used com-
plete tumor sections for EGFR expression quantification and we
used the same tumor sections for both autoradiographic and
immunohistochemical analyses. In addition, we excluded necrosis
and other non-tumor tissues from the tumor sections, eliminating
potential bias from tracer localization in nonviable tissue. Further-
more, in a previous study we showed that when using F(ab’)2 frag-
ments, optimal imaging could be performed already at 24 h p.i. in
contrast to intact IgGs which need a significantly longer accretion
time [20]. This could be important, as early imaging allows better



Fig. 3. MicroSPECT images of 111In-cetuximab-F(ab’)2 obtained at 24 h p.i. of SCCNij202, 153, 185 and 167. Arrow = s.c. tumor location in right hind leg.
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monitoring of tumor dynamics. It is also relevant for the often
rapid cell turnover of hypoxic, but also non-hypoxic, cells and
consequentially, their response to treatment [28].

In our previous study tumors with an intermediate immunohis-
tochemical EGFR expression had a varying response to cetuximab
[15]. In patients, it has been reported that EGFR expression as
determined immunohistochemically is associated with survival
but not with response to EGFR-inhibitors [29–31]. Even an inverse
relationship between EGFR measured by immunohistochemistry
and effectiveness of cetuximab was noted in a study where pa-
tients with low-to-moderate EGFR expression demonstrated an
improved treatment response [32]. Similarly, in a preclinical study
conducted by Gurtner et al., it has been shown that membrane and
cytosolic EGFR expression do not correlate with local tumor control
after radiotherapy or radiotherapy combined with cetuximab, pos-
sibly due to changes in EGFR expression induced after treatment
[11]. Molecular imaging of EGFR-specific radiotracers has the
advantage that only systemically accessible EGFR is measured
and can be applied before and after treatment. In the current study,
in three out of four HNSCC models, 111In-cetuximab-F(ab’)2 tumor
uptake was proportionally related to cetuximab response as high
tumor uptake appeared to indicate a good cetuximab response
and low uptake denoted a poor response. Only in one model with
intermediate fEGFR and high tracer uptake, SCCNij153, the cetux-
imab response was discordant. This could be due to other domi-
nant survival mechanisms in this particular tumor model that are
not blocked by cetuximab, like dependency on the HER-pathway
or alterations in the downstream signaling of the EGFR-mediated
PI3-K/AKT pathway [15,33–35]. Important to note, as depicted in
Fig. 2B, is that at similar levels of EGFR expression, a notable vari-
ation in tracer uptake can be seen. This is most apparent at fEGFR
0.7, where at least 7 tumors from three different models have a
similar amount of EGFR expression but show dissimilar tracer up-
take. Tumor uptake might be influenced by tumor microenviron-
mental factors, as well as by host factors. This emphasizes the
aforementioned observations that EGFR-blockage added to radio-
therapy may not result in the same effect on growth delay and lo-
cal tumor control in individual tumors with a similar baseline EGFR
expression. Hence, it accentuates the need for patient-specific
approaches and for case-by-case analyses, where longitudinal non-
invasive measurements are key and patients can serve as their own
control.

In conclusion, this study shows the potential of 111In-cetux-
imab-F(ab’)2 to rapidly determine EGFR expression in tumors
noninvasively. Therefore, the 111In-cetuximab-F(ab’)2 tracer can
be a valuable asset for monitoring EGFR targeting in patients and
for assessment of treatment response.
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