
  
Abstract— State-of-the-art small-animal Single Photon 

Emission Computed Tomography (SPECT) with multi-pinhole 
collimators (MP-SPECT) can reach sub-half-millimetre image 
resolutions, which outperforms the reconstructed resolution of 
high-end small-animal Positron Emission Tomography (PET), 
that has a resolution just below 1 mm. This naturally raises the 
question how well positron emitters can be imaged with dedicated 
pinhole collimators. A SPECT system with an additional 
collimator to image positron emitters at a high resolution could be 
extremely cost-effective and has the additional advantage that it 
can perform simultaneous dual-isotope imaging of PET and 
SPECT tracers. 

Multi-pinhole collimators for SPECT tracers (typically 
30-250keV) are not suitable to image positron emitters, because of 
the large amount of edge penetration of 511keV annihilation 
photons. The resulting image blurring can be remedied by using 
pinholes with smaller acceptance (cone-)angles. However, as a 
consequence the field-of-view of each pinhole is reduced. Here, we 
present a completely new collimator geometry, which is based on 
clusters of pinholes with small acceptance angles. All the pinholes 
in such a cluster sample about the same field-of-view as a single, 
traditional pinhole. As a result it is avoided that an undesirable 
number of bed or detector position has to be used to have complete 
data of the volume-of-interest (VOI). 

To investigate the performance of this new collimator geometry 
for positron emitters, we compare simulated images of a resolution 
phantom and a mouse brain striatal phantom with i) a traditional 
collimator (TMP), ii) a collimator with pinholes with smaller 
acceptance angles focusing on a smaller central field-of-view 
(FMP), iii) a collimator with clusters of pinholes (CMP) that 
samples the same field-of-view as TMP. The smallest rods of the 
resolution phantom that can be resolved have a diameter of 0.9 
mm (TMP), 0.65 mm, (FMP) and 0.65 mm (CMP). Both FMP and 
CMP enable to visualize uptake in sub-compartments of the mouse 
brain, which opens up unique possibilities to analyze processes 
underlying the function of neurotransmitter systems, but FMP  
needs an undesirably high number of bed movements to sample 
the entire VOI. We conclude that imaging of positron emitters 
with CMP collimators is extremely promising, since PET tracers 
can be imaged with an even better resolution than state-of-the-art 
co-incidence PET.  
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I. INTRODUCTION 
In recent years, the image resolution of SPECT systems 
dedicated to imaging small animals has improved dramatically: 
SPECT with multi-pinhole collimators (MP-SPECT) can now 
image tracer uptake in structures < 0.35mm [1-4]. These 
resolutions are much better than those of state-of-the-art 
small-animal PET (just below 1 mm), despite the much higher 
sensitivity of PET. This naturally raises the question if cases 
exist in which PET tracers can be imaged better using special 
SPECT collimators [5]. 

Simultaneous imaging of multiple-tracers is of increasing 
interest. In SPECT, performing simultaneous dual-tracer 
imaging is possible by setting multiple-energy windows [6-8], 
whereas this is impractical in PET where all gamma-photons 
have equal energies. A system performing PET and SPECT 
scans simultaneously brings many new possibilities of 
dual-tracer imaging into reach. Compared to separate PET and 
SPECT devices, a combined PET/SPECT scanner can produce 
images of different processes that are perfectly aligned, has 
reduced acquisition time and is potentially much more 
cost-effective. 

The limited resolution in co-incidence PET imaging is caused 
by i) intrinsic detector resolution, ii) non-collinearity of the 
annihilation gamma-photons, iii) random co-incidences, and iv) 
the finite range of positrons. The first three factors are not 
prominent in pinhole SPECT: the disadvantages of intrinsic 
detector resolution can be largely overcome by the principle of 
pinhole magnification, while non-collinearity and random 
co-incidences do not play a role in single photon imaging. 
These advantages of pinhole imaging may partly compensate 
the limited sensitivity of SPECT. As a result, in a subset of 
imaging situations the extension of MP-SPECT to detect 
high-energy annihilation photons may yield better resolution 
for positron emitters than contemporary small-animal PET as 
will be shown in the next sections. 

Current pinhole collimators are not suitable for 
high-resolution imaging of 511 keV annihilation photons, 
because of the strong pinhole edge penetration at high energies. 
The resolution loss due to edge penetration can in principle be 
reduced by using smaller pinhole acceptance angles. This, 
however, restricts the field-of-view of the collimator. In this 
paper we investigate a completely new pinhole geometry which 
uses many pinholes with small acceptance angles, which are 
grouped in clusters [9]. The pinholes grouped in a single cluster  
sample a field-of-view that has approximately the same size as 
the field-of-view of a single traditional pinhole.  
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The application of pinholes to image positron emitters was 
already investigated in [10]. However, the Uranium collimators 
used in this study do not give high-resolution images: even for 
Tc-99m only 1.5 mm reconstructed resolutions were obtained, 
while in F-18 scans structures with a diameter of 3.9 mm were 
resolved at best. Other authors have followed the opposite 
approach of combining PET and SPECT by inserting a 
collimator in an existing PET system [11]. An attempt to 
improve resolution of co-incidence PET based on the principles 
of so-called virtual pinholes, is investigated in [12] 

The aim of the present paper is to investigate the performance 
of the cluster-pinhole collimator geometry by comparing 
simulated images of a resolution phantom and a mouse brain 
striatal phantom. Traditional MP-SPECT (TMP), MP-SPECT 
with small acceptance-angle pinholes and a reduced 
field-of-view (FMP) and MP-SPECT with clusters of pinholes 
(CMP) are simulated.  
 

II. METHODS 

A. Cluster pinhole design and geometry of collimators 
Cluster pinholes. The concept of a cluster of pinholes [9] is 
illustrated in figure 1, where a cross section through a cluster of 
four pinholes is shown (cross section through two out of four 
pinholes). The cluster of pinholes, with acceptance angle α/2 
each, samples approximately the same field-of-view as a single 
traditional pinhole with acceptance angle α. A 
three-dimensional illustration of a ring of clusters containing 
four pinholes each, is shown in figure 2. 
 
Geometry of collimators. We compare three different 
geometries which differ only by their collimator design. For the 
detector geometry, we assume three conventional 
gamma-detectors placed in a triangular shape [4]. The detectors 
have an intrinsic resolution of 3.5 mm and 12% of the 511 keV 
photons that fall onto the detector end up in the photo-peak [14].  

The number of pinholes of each collimator is determined by the 
requirement that the complete detector area is used but that 
projections from different pinholes do not overlap. 
Furthermore, we demand that our collimator is large enough for 
whole-body mouse imaging and consequently, an inner 
collimator diameter of 44 mm is required for a central 
field-of-view (CFOV) with a diameter of 12 mm [15]. We 
define the CFOV as the area that is seen by all pinholes or 
pinhole clusters. A reduction of the CFOV diameter requires an 
equal increase in the inner collimator diameter, because much 
more mouse translations are necessary. We choose a pinhole 
diameter d=0.6 mm for all collimators. To prevent direct 
penetration of the collimator, we assume a collimator wall 
thickness of 25 mm with pinholes placed symmetrically in the 
collimator. 
 
TMP. The traditional SPECT geometry we consider has 75 
pinholes, placed in 5 rings, with an acceptance angel α=30°. 
The pinhole centres are at a distance of 34.5 mm from the centre 
of the collimator.  CFOV is about 18 mm in diameter and 12 
mm long. 
 
FMP. The second geometry has 270 pinholes with an 
acceptance angle α=15° and pinholes centres placed at a radius 
of 37.5 mm. The CFOV is about a factor of two smaller in all 
directions than that of  TMP. 
 
CMP. The cluster-pinhole collimator design has clusters of four 
pinholes, each pinhole having an acceptance angle of 15°. The 
CFOV is almost equal to that of TMP and the centres of the 

α

α/2

a) b)

α

Figure 1: Cross section through a traditional pinhole (a) 
with opening angle α, that samples the same 
field-of-view as a cluster of four pinholes (b) with 
opening angles α/2.  This cross section is taken through 
two of the four pinholes within the cluster. 

Figure 2: Six clusters of 4 pinholes each placed 
in a ring 
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pinholes are at a distance of 34.5 mm from the centre of the 
collimator. 
 

B. Simulations 
 Projection simulations representing F-18 are performed with 
a resolution phantom and a mouse brain striatal phantom. The 
simulator takes into account effects such as finite positron 
range, pinhole edge penetration and detector blurring [14].  The 
resolution phantom consists of six sectors with rods of different 
diameters (0.6, 0.65, 0.7, 0.75, 0.8 and 0.9 mm), as shown in 
figure 3.a. An activity concentration in the active areas of the 
resolution phantom of 250 MBq/ml and a scan duration of 1.5 
hours were assumed. The mouse brain striatal phantom is 
shown in figure 4.a. Our simulations assume that an activity of 
40 MBq is injected into the mouse which is scanned during 45 
minutes starting 15 minutes post-injection. 
 Poisson noise was generated in the projection data. The voxel 
size of both phantoms was 0.125 mm, twice as small as the 
voxel size during image reconstruction. This was done to 
emulate the fine resolution properties of real activity 
distributions. 

  

C. Image reconstruction 
 Image reconstruction for all systems was performed using 
Ordered Subset Estimation Maximization (OSEM[16]) with ten 
subsets. Relevant non-zero matrix elements were pre-calculated 
using simulations of point source responses. The voxel size 
during reconstruction was 0.25 mm. 

III. RESULTS 
 In figure 3 we show images of the hot rod resolution phantom 
for TMP, FMP, and CMP. The smallest rods that can be 
resolved have a diameter of 0.9 mm (TMP), 0.65 mm (FMP), 
and 0.65 mm (CMP). In figure 4, images of the mouse brain 
striatal phantom are shown. FMP and CMP show much more 
details than TMP and it is even possible to partly distinguish 
sub-striatal structures.  
 

IV. DISCUSSION 
It is clear from the simulated images of figure 3, that 

a) Hot rod phantom with cappilary diameters of 0.6, 0.65, 0.7, 0.75, 0.8 and 0.9 mm simulated with b) TMP, c) 
FMP, d) CMP. Slice thickness is 1.5 mm. 

a) A trans-axial slice through a mouse brain striatal phantom simulated with b) TMP, c) FMP, d) CMP. Slice 
thickness is 1.5 mm. 
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decreasing the pinhole acceptance angle is a good remedy 
against the strong blurring due to pinhole edge penetration of 
511 keV gamma-rays. However, the improved resolution is 
traded for a smaller CFOV and as a consequence, an increase in 
the number of steps with a factor of 8 is necessary to sample the 
same VOI with FMP compared to TMP. The resolution of the 
cluster-pinhole geometry is equal to that of FMP, while it has 
the same CFOV as traditional pinhole SPECT.   

While the resolution of CMP is distinctively improved 
compared to high-end small-animal co-incidence PET, the 
sensitivity of this newly proposed device cannot reach the level 
of co-incidence PET devices. We believe that for applications 
where only small parts of a mouse are imaged, such as 
sub-compartments of the mouse brain (see figure 4), the limited 
sensitivity does not necessarily pose a large problem and that in 
many cases our cluster-pinhole collimator could allow imaging 
of structures that are not resolvable by any traditional PET 
device. For whole body imaging, the limited sensitivity may 
have more consequences. Although it has been shown that 
MP-SPECT with SPECT tracers is able to achieve sub-mm 
image resolutions [15], further investigations are needed to find 
our in which cases this also holds for CMP. A detailed 
comparison of CMP and ring-PET will be performed in the 
future to investigate all these issues for a wide range of imaging 
situations. 

 

V. CONCLUSION 
 In this paper we have shown that pinhole geometries based 
on cluster of pinholes are extremely promising for imaging PET 
tracers and possibly combined imaging of PET and SPECT 
tracers. Our simulations indicate that the resolution that can be 
obtained with clustered pinholes surpasses that of 
state-of-the-art small-animal PET devices in case of imaging 
objects with the size of mouse organs. The high image 
resolution, the possibility to perform simultaneous dual-tracer 
imaging as well as the enormous costs saved by the fact that 
only a single scanner is needed for PET and SPECT can have a 
large impact on several future research applications. 
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