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Simple Summary: Metastatic melanoma is a deadly disease that claims thousands of lives each year
despite the introduction of several new drugs into the clinic over the past decade, inspiring the need for
novel therapeutics. We investigate targeting melanin pigment, which causes melanoma, with protein
molecules called antibodies, which carry a radioactive payload to visualize or treat melanoma tumors. In
this study, we imaged and treated melanoma in mice using a c8C3 antibody to melanin and two radioiso-
topes of lead—Lead-203 for imaging and Lead-212 for therapy. Imaging with Lead-203-bound antibodies
allowed for visualization of the tumors in mice, while treatment with Lead-212-bound antibodies slowed
down the growth of these aggressive tumors. The treatment was not toxic to mice. We concluded that
the melanin-targeting Lead-203/Lead-212-bound c8C3 antibody is a promising agent for imaging and
therapy of metastatic melanoma (so-called theranostic), which warrants further investigation.

Abstract: Metastatic melanoma is a deadly disease that claims thousands of lives each year despite
the introduction of several immunotherapeutic agents into the clinic over the past decade, inspiring the
development of novel therapeutics and the exploration of combination therapies. Our investigations target
melanin pigment with melanin-specific radiolabeled antibodies as a strategy to treat metastatic melanoma.
In this study, a theranostic approach was applied by first labeling a chimeric antibody targeting melanin,
c8C3, with the SPECT radionuclide 203Pb for microSPECT/CT imaging of C57Bl6 mice bearing B16-F10
melanoma tumors. Imaging was followed by radioimmunotherapy (RIT), whereby the c8C3 antibody
is radiolabeled with a 212Pb/212Bi “in vivo generator”, which emits cytotoxic alpha particles. Using
microSPECT/CT, we collected sequential images of B16-F10 murine tumors to investigate antibody
biodistribution. Treatment with the 212Pb/212Bi-labeled c8C3 antibody demonstrated a dose-response in
tumor growth rate in the 5–10 µCi dose range when compared to the untreated and radiolabeled control
antibody and a significant prolongation in survival. No hematologic or systemic toxicity of the treatment
was observed. However, administration of higher doses resulted in a biphasic tumor dose response,
with the efficacy of treatment decreasing when the administered doses exceeded 10 µCi. These results
underline the need for more pre-clinical investigation of targeting melanin with 212Pb-labeled antibodies
before the clinical utility of such an approach can be assessed.

Keywords: metastatic melanoma; 203/212Pb; melanin; SPECT/CT imaging; radioimmunotherapy;
B16F10 melanoma

1. Introduction

Metastatic melanoma remains a deadly disease, claiming thousands of lives each
year despite several immunotherapeutic agents introduced into the clinic over the past
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decade [1–11]. This motivates the development of novel approaches and combination ther-
apies for treating metastatic melanoma. One such approach involves targeting melanin pig-
ment with radionuclide therapy using either melanin-binding small molecules or melanin-
specific monoclonal antibodies (mAbs) [12]. Our investigations have targeted melanin with
melanin-specific radiolabeled antibodies, a method termed radioimmunotherapy (RIT), as a
possible strategy to treat metastatic melanoma [12]. In mammalian cells, melanin is located
intracellularly inside melanosomes. Figure 1A illustrates the process of treating melanoma
using a radiolabeled melanin-binding monoclonal antibody. In a rapidly growing tumor,
melanin is released from melanoma cells, which become non-viable as a result of cellular
turnover. The melanin-binding antibody selectively binds to the free melanin and delivers
cytotoxic radiation to the surrounding area. The radiation emitted in a 360-degree sphere
results in the destruction of melanized, weakly melanized, and amelanotic cells through
a “cross-fire” effect [13,14]. We previously showed that a human mAb targeting melanin
labeled with the short-lived alpha-emitter bismuth-213 (213Bi, 46-min half-life) was more
efficacious and safer in treating experimental melanoma compared to the same mAb labeled
with the long-lived beta-emitter lutetium-177 (177Lu, 6.7-day half-life) [15]. This suggests
that alpha-emitting isotopes have a strong potential to treat metastatic melanoma.
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Figure 1. Binding of a melanin-specific antibody to melanin in a melanoma tumor and its quality 
control: (A) A diagram illustrating the process of treating melanoma using a radiolabeled melanin-Figure 1. Binding of a melanin-specific antibody to melanin in a melanoma tumor and its quality

control: (A) A diagram illustrating the process of treating melanoma using a radiolabeled melanin-
binding monoclonal antibody is depicted. In a rapidly growing tumor, melanin is released from
melanoma cells, which become non-viable as a result of cellular turnover. The melanin-binding
antibody selectively binds to the free melanin and delivers cytotoxic radiation to the surrounding
area. The radiation emitted in a 360-degree sphere results in the destruction of melanized, weakly
melanized, and amelanotic cells through a “cross-fire” effect (adapted from Ref. [14]); (B) melanin
ELISA showing c8C3 binding to melanin from Sepia officinalis. Humanized anti-CD33 antibody
lintuzumab was used as a negative control; (C) radioHPLC of 203Pb-c8C3 shows all radioactivity
being associated with the antibody peak.
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Alpha-emitters possess high linear energy transfer and a short emission path length of
several cell diameters in tissue, which results in significant induction of DNA double-strand
breaks and more localized destruction of cancer cells compared to beta-emitters [16,17].
Moreover, there is potential to enhance cancer cell destruction by combining radionuclide
therapy with the synthetic lethality characteristics of therapeutic agents and the malfunc-
tioning DNA double-strand break repair mechanisms often found in cancer cells [18]. A
short physical half-life of a radionuclide results in a high dose rate, which is necessary to
counteract the growth of aggressive cancers during targeted radionuclide therapy. Short-
lived alpha-emitters are particularly desirable for the treatment of aggressive cancers, such
as metastatic melanoma. Lead-212 (212Pb, 10.6-hour half-life) acts as an “in vivo generator”
as it decays to alpha-emitters bismuth-212 (212Bi, 1-hour half-life) and polonium-212 (212Po,
0.3-microsecond half-life), which are both highly cytotoxic [19]. An additional advantage
for 212Pb is the potential use of lead-203 (203Pb, 52-hour half-life) as a SPECT radioisotope,
thus making 203Pb/212Pb a true theranostic pair [19]. Since 203Pb and 212Pb are chemically
identical isotopes, compounds radiolabeled with 203Pb/212Pb should exhibit similar in vivo
biodistributions, increasing confidence that the therapeutic 212Pb dose is precisely delivered
to tumors delineated in 203Pb diagnostic SPECT scans. In the current study, we applied a
theranostic approach to microSPECT/CT imaging and RIT of experimental B16-F10 murine
melanoma with a 203Pb/212Pb labeled chimeric antibody targeting melanin.

2. Materials and Methods

Antibodies, conjugation, and radiolabeling. Aragen Bioscience manufactured the
chimeric antibody (c8C3) that binds melanin. Human IgG control (Cat. # DAGIC1333)
was purchased from Creative Diagnostics; humanized anti-CD33 antibody lintuzumab
biosimilar—from Creative Biolabs (Shirley, NY, USA). The immunoreactivity of c8C3 mAb
towards melanin was measured by in-house melanin ELISA using melanin from Sepia
officinalis (cat# M2649, Sigma-Aldrich, St. Louis, MO, USA).

The bifunctional chelating agent TCMC (2-(4-isothiocyanatobenzyl-1,4,7,10-tetraaza-
1,4,7,10,tetra-(2-carbamonylmethyl)-cyclododecane) was purchased from Macrocyclics
(Plano, TX, USA). The 224Ra/212Pb generator was supplied by Los Alamos National Labo-
ratory (Los Alamos, NM, USA). 203Pb was supplied by the Medical Isotope and Cyclotron
Facility at the University of Alberta. The 203Pb was produced by irradiation of isotopically
enriched 205Tl metal and the 205Tl(p,3n)203Pb nuclear reaction on a TR-24 cyclotron and
purified to a 203Pb(OAc)2 chemical form amenable for direct radiolabeling at 22 ◦C, as
previously described [20]. c8C3 and human IgG mAbs were conjugated to p-SCN-TCMC as
previously described [15], with an initial 20 molar excess of p-SCN-TCMC over c8C3 mAb.
Chelating agent to antibody ratio (CAR) for the resulting antibody conjugate was deter-
mined via the MALDI-TOF method at the University of Alberta, Canada, mass spectrometry
facility and found to be ~8.8 TCMC/mAb.

Murine B16-F10 melanoma model. All animal studies were approved by the Animal
Research Ethics Board of the University of Saskatchewan, Animal Protocol # 20170006.
Six-week-old C57BL/6 female mice obtained from Charles River Laboratories (Wilming-
ton, MA, USA) were injected subcutaneously with 5 × 105 B16-F10 murine melanoma
cells in Matrigel (1:1 dilution, Corning Inc., Coring, NY, USA) into the right flank. The
microSPECT/CT imaging and RIT studies were performed when tumor volume reached
50–75 mm3.

Radiolabeling of TCMC-c8C3. A 224Ra/212Pb generator was purchased from Los
Alamos National Laboratory (Los Alamos, NM, USA). The generator was eluted according
to the manufacturer’s instructions. In summary, 1 mL of 0.5 M HCl was first passed through
the column to elute any 212Bi, followed by 1 mL of H2O to wash the column. Immediately
after the water wash, 1 mL of 2 M HCl was passed through the column to elute 212Pb. Finally,
1 mL of H2O was passed through the column to wash the generator of any remaining HCl.
0.5 mL of H2O was added to the generator for storage for subsequent use, leaving the resin
immersed in H2O. The 2 M HCl 212Pb elution was collected in 0.25 mL fractions, with the
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first fraction being discarded. The remaining fractions were combined and evaporated
at 85 ◦C under a flow of nitrogen gas for 1 h. The dried fraction was redissolved in
0.15 M NH4OAc buffer (pH = 6.5), and the activity of 212Pb was calculated using a CRC-
25W (Capintec, Inc., Florham Park, NJ, USA) using a provided multiplication factor with
t = 0 set as the elution time. The desired activity of 212Pb was added to the TCMC-c8C3 to
achieve a 5:1 µCi:µg specific activity and reacted at 37 ◦C for 1 h. Radiochemical yields were
found to be greater than 98% via iTLC (Agilent, Santa Clara, CA, USA), and the radiolabeled
product was used without further purification. A 203Pb solution in 1 M NH4OAc buffer
was received from the University of Alberta (Edmonton, AB, Canada) and used directly
to achieve a 5:1 µCi:µg specific activity with TCMC-c8C3 dissolved in 0.15M NH4OAc
buffer, with radiolabeling performed at 37 ◦C. Radiochemical yields were greater than 99%
as confirmed by iTLC and SEC-HPLC (Agilent, Santa Clara, CA, USA) equipped with a
TSKgel SuperSW2000xl, 4.6 mm ID x 30 cm, 4 µm column (Tosoh Bioscience, Tokyo, Japan),
running an isocratic mobile phase of 50 mM sodium phosphate buffer and 200 mM NaCl at
pH = 7.0.

microSPECT/CT imaging of B16-F10 melanoma with 203Pb-c8C3 mAb. B16-F10 tumor-
bearing mice were injected via the tail vein with 200 µCi 203Pb-c8C3 (syringes were mea-
sured before and after injection to account for a total administrated dose that ranged
from 204 to 190 µCi) and imaged at 3, 24, 48, and 120 h on a MiLabs VECTor4 (Utrecht,
The Netherlands) using an Extra Ultra High Sensitivity Mouse (XUHS-M) collimator for
20–350 keV. Images were processed using MiLabs software (v8.00RC6) using a 0.4 mm voxel
grid with 10 iterations and 10 subsets. SPECT images were then filtered using Gaussian
smooth 3D FWHM (2 mm in X, 2 mm in Y, and 2 mm in Z) using pMOD v3.903 (pMOD
Technologies, Inc., Zurich, Switzerland). Tumor regions of interest (ROIs) were drawn
based on CT images using 3D Slicer v5.0.3 (slicer.org). Images were exported as RTSS
dicom files and imported into pMOD for SUV analysis. SUVbw was calculated in pMOD,
with SUVbw = r/(a’/w), where r is the activity concentration in the ROI (kBq/mL), a’ is
the decay-corrected dose of 203Pb-c8C3 (kBq), and w is the body weight (kg) of the mouse.
Images were then generated with an SUV range of 1–2.5 g/mL for direct comparison
between time points.

RIT of B16-F10 melanoma with 212Pb-c8C3 mAb. Tumor-bearing mice were random-
ized in groups of 5 animals (except for an untreated control group that had 10 animals)
and administered via the tail vein with 5, 10, or 17 µCi 212Pb-c8C3 mAb, 10 or 17 µCi
212Pb-IgG control mAb, or left untreated. Tumor size and animal weight were measured
and documented twice per week. Blood was collected from mice at the end of the study for
blood cell counting and blood chemistry analysis.

Statistical analysis. The determination of statistical power for in vivo cytotoxicity
experiments was computed using PASS version 11 (NCSS, Inc., Kaysville, UT, USA). The
estimation was based on pilot data and cautious assumptions concerning the groups treated
with radiolabeled antibodies, employing diverse simulations of tumor volumes. The results
of all simulations indicated a minimum power of 83%. This outcome, combined with the
large differences observed between the treated and untreated animals, enabled the use of
only five mice per group for the in vivo studies. All data was analyzed using GraphPad
Prism (Version 8.3.1). One-way ANOVA was used for the analysis of the tumor volumes,
followed by Dunnett’s post hoc analysis to compare all treatment groups vs. the untreated
group. Mice survival was analyzed using Log-rank text.

3. Results

TCMC-conjugated c8C3 mAb to melanin demonstrated binding to melanin and quan-
titative radiolabeling with 203Pb/212Pb. TCMC-conjugated c8C3 mAb preserved its binding
to melanin, as shown by melanin-binding ELISA (Figure 1B). RadioHPLC of 203Pb-c8C3
revealed that all radioactivity was associated with the antibody peak, thus confirming the
quantitative radiolabeling yields determined by iTLC (Figure 1C).
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203Pb-c8C3 demonstrated high localization in B16-F10 melanoma tumors by mi-
croSPECT/CT. Figure 2 displays the microSPECT/CT images of B16-F10 tumor-bearing
mice at 3, 24, 48, and 120 h post-mAb administration (Figure 2A) as well as tumor SUV
values (Figure 2B). The 203Pb-c8C3 stayed in circulation for up to 120 h post-injection (p.i.).
The tumor uptake of 203Pb-c8C3 increased from 3 to 24 h, after which the uptake remained
mostly constant up to 120 h p.i. with little washout of radioactivity.
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Figure 2. (A) microSPECT/CT imaging of B16-F10 melanoma-bearing mice at 3–120 h post-203Pb-
c8C3 mAb administration. The SUVbw values are standardized with a range of 1–2.5 g/mL, as shown
below the images. The tumors are identified with red circles. (B) Measured SUVbw values based on
Tumor ROIs are drawn using CT Data.

212Pb-c8C3 mAb slowed B16-F10 tumor growth in a dose-dependent manner.
Figure 3A depicts the individual tumor volume in mice with B16-F10 melanoma tumors
after treatment with a single dose of 212Pb-c8C3 or 212Pb-IgG control (red arrow) three
days after tumor cell inoculation. The majority of untreated mice reached the maximum
tumor size or became ulcerated within 20 days of tumor induction. All mouse-bearing
tumors reached the study-defined endpoint within 24 days. The lower dosage (5 µCi)
of 212Pb-c8C3 treatments did not affect tumor growth when compared to the untreated
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mice (the blue line represents the average tumor volume of the untreated group). Higher
dosages (10 µCi or 17 µCi) of 212Pb-c8C3 treatments suppressed tumor growth for up to
18 days. For the non-binding IgG control groups, mice that received a 10 µCi dose showed
similar results to the untreated group’s tumor growth, while the group that received the
17 µCi dose displayed a suppression effect on tumor growth. Despite large differences in
mean tumor volume between untreated controls and the groups treated with higher doses
of RIT, statistical significance was not reached (Figure 3B). In terms of overall survival,
100% of mice in the 10 µCi 212Pb-c8C3 and the 17 µCi 212Pb-IgG groups survived for 23 and
24 days, respectively, while the other groups displayed significantly shorter survival times
(Figure 4A), with longer survival in the former two groups than in the untreated controls
(Figure 4B).
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Figure 3. Tumor volume of B16-F10 tumor-bearing mice after RIT. The black line represents the
individual tumor volume of the mouse. The blue line represents the average untreated tumor
volume. (A) A single dosage (5 µCi, 10 µCi, or 17 µCi) of 212Pb-labeled c8C3 anti-melanin antibody
or IgG control antibody was given to the treatment groups. The red arrow indicates the time of RIT.
(B) p values for comparison of tumor volumes to the untreated group.

Treatment with the 212Pb-c8C3 mAb was well tolerated. All mice experienced a
2–8% drop in body weight post-RIT, with the nadir occurring around day 3 post-treatment
(Figure 5). Body weight recovery was observed after this point for all groups of mice that
received RIT, including those that received the highest dose of 17 µCi. No differences were
observed between the groups (Figure 5).
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Figure 4. Kaplan-Meier survival curves for B16-F10 melanoma-bearing mice treated with the melanin-
targeting 212Pb-c8C3 mAb. (A) survival curves; (B) p values for comparison of survival in treated
groups relative to the untreated group. * indicates a statistically significant p value smaller than 0.05,
** indicates a statistically significant p value smaller than 0.005.
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melanin-targeting mAb. The relative weight was calculated based on the starting date of the experi-
ment. Mice in all groups gained weight after the radiation therapy. Red arrow indicates the day of
212Pb injection.
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At the completion of the study, a complete blood count (CBC) and blood chemistry
analysis were performed for each mouse. The white blood cell (WBC), red blood cell
(RBC), and platelet (PLT) values were compared between treatment groups and the untreated
control (Figure 6). The observed CBC values were within the normal range for each cell type,
with no differences between the treated groups and untreated controls, suggesting that the
hematopoietic system was able to recover from the radiation therapy. Aspartate transaminase
(AST) and alanine transaminase (ALT) levels were within the range of untreated groups,
indicating no detrimental impact on liver function (Figure 7A,B). Similarly, creatinine and
BUN values were unaffected by RIT (Figure 7C,D), indicating that kidney function was
uncompromised. No significant differences were observed in CBC (Figure 6) and blood
chemistry analysis (Figure 7) between untreated controls and treated groups, suggesting an
absence of systemic toxicity associated with melanin targeting 212Pb-c8C3 RIT.
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Figure 6. Blood counts in B16-F10 melanoma-bearing mice at the conclusion of the RIT experiment.
(A). White blood cell (WBC) numbers in each group. (B). Red blood cell (RBC) numbers in each
group. (C). Platelets (PLT) number in each group. The dotted lines show the normal range for white
blood cells, red blood cells, and platelets in female C57Bl6 mice.
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Figure 7. Liver and kidney functions were tested in B16-F10 melanoma-bearing mice at the conclusion
of the RIT experiment. (A,B), liver enzymes (aspartate transaminase (AST) and alanine transaminase
(ALT)) activity were tested. Elevated enzyme activity would indicate liver damage. (C,D). creatinine,
and blood urea nitrogen (BUN) level were tested. Increased level of Creatinine or BUN would indicate
kidney damage or dysfunction. The dotted lines show the normal range for AST, ALT, creatinine,
and BUN for female C57Bl6 mice.

4. Discussion

In this study, we investigated the use of the 203Pb/212Pb theranostic pair labeled with
the chimeric c8C3 anti-melanin mAb for microSPECT/CT imaging and RIT in B16-F10
murine melanoma-bearing mice. The microSPECT/CT imaging with 203Pb-c8C3 revealed
a long circulation time of the mAb in the blood, which extended up to 120 h post-mAb
administration (Figure 2B). Due to this extended circulation, we observed that maximal
uptake in the tumor was achieved after 24 h, and there was no appreciable washout of 203Pb-
c8C3 from the tumor at later time points, indicating stable uptake. We did not employ an
irrelevant radiolabeled antibody control in our imaging experiments since, as we pointed
out in our prior work on targeting other intracellular antigens with the radiolabeled
antibodies, any radiolabeled antibody targeting an intracellular antigen would exhibit
therapeutic effects to some degree, and antibodies targeting surface antigens demonstrate
entirely distinct (accelerated) binding kinetics in vivo [21]. High tumor uptake of 212Pb-
c8C3 would be beneficial for the delivery of tumoricidal alpha radiation to the tumor cells.
Despite the long circulation of the 203Pb/212Pb-c8C3 mAb in the blood, there were no
indications of toxicity to the bone marrow, as reflected in the normal values for all CBC
parameters (Figure 5), or to the liver and kidneys, as indicated by nominal blood chemistry
analysis (Figure 7).

The doses of 212Pb-c8C3 used in our RIT experiments were comparable to doses of
212Pb-labeled antibodies used by other groups in pre-clinical studies [22,23]. The RIT results
of B16-F10 melanoma tumors revealed a dose-dependent pattern where a 5 µCi dose of
212Pb-c8C3 resulted in no meaningful effect on tumor growth, while a 10 µCi dose slowed
tumor growth compared to either the 10 µCi dose of non-specific control human IgG or
the untreated control group (Figure 3). The 10 µCi dose also significantly prolonged the
survival of treated mice (Figure 4). Interestingly, when the dose was increased to 17 µCi of
either 212Pb-c8C3 or 212Pb-IgG, the efficacy of 212Pb-c8C3 decreased while the efficacy of
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212Pb-IgG increased. The radiobiology of targeting internal or highly shed antigens with
radioimmunotherapy is significantly more complex than targeting surface antigens [24],
which leads to different, non-linear pharmacokinetics of tumor uptake and, as a result,
biphasic therapy efficacy, as observed in this study. In this regard, when surface antigens
are targeted with a radiolabeled antibody, killing of those cells leads to target depletion,
which makes it easier for incoming radiolabeled molecules to penetrate deeper inside
the tumor to deliver their cytocidal payload. However, in the case of internal antigens
such as melanin, which is reachable for antibody molecules only in leaky and/or already
dead cells, the killing of cells with radioimmunotherapy creates more and more antigen,
which will eventually lead to the formation of an “antigen barrier”, thus preventing the
radiolabeled antibody molecules from penetrating deeper inside the tumor [24]. We have
demonstrated using computer modeling that because of the “antigen barrier”, the radiation
doses delivered to the tumors by the beta-emitter-labeled antibody to melanin are practi-
cally the same for the tumors with drastically (100-fold) different melanin contents [25].
The “antigen-barrier” effect influences the outcomes of therapy even more significantly
when alpha-emitting radionuclides with their short range in tissue, such as 212Pb/212Bi, are
used, as alpha-particles cannot penetrate deep into the tumor if emitted in the vicinity of
the antigen-barrier. This results in biphasic therapy efficacy, as we observed with the 17
µCi dose of 212Pb/212Bi-c8C3. In contrast, the non-binding IgG control freely penetrates
deep into the tumor due to the EPR (enhanced permeability and retention) effect [26],
thereby delivering alpha radiation randomly to cancer cells. The similar effects of spe-
cific and non-specific antibodies on tumors when radiolabeled with powerful short-lived
alpha-emitters have been reported [27], and the authors explained their observations by
variations among animal models, the innate radiosensitivities of tumors, and the need to
evaluate radioimmunoconjugates across multiple models. In general, designing mean-
ingful controls for pre-clinical radioimmunotherapy studies is more challenging than for
traditional antibody-drug conjugates (ADC), as the latter do not deal with the off-target
cytocidal effects of ionizing radiation [28–30]. Taken together, these results underline the
importance of careful dosing of radioimmunotherapeutic agents and highlight the reality
that the highest tolerated doses might not always be the most effective ones.

The 203Pb/212Pb theranostic pair has shown promise in the treatment of experimental
melanoma and prostate cancer in conjunction with short peptides or small molecules [31–33].
In the Li et al. metastatic malignant melanoma study, the combination of a 212Pb conjugated
melanocortin-1-receptor (MC1R) peptide ligand, a BRAF inhibitor (direct inhibition of
BRAF protein), and a histone deacetylase inhibitor resulted in increased levels of MC1R,
thus increasing MC1R-MC1L binding, which in turn enhanced 212Pb uptake in human
melanoma cells in the mouse model, decreased tumor growth, and ultimately increased
survival [34]. Miao et al. utilized 203Pb-labeled alpha-melanocyte-stimulating hormone pep-
tides as an imaging probe for melanoma detection [35,36]. When treating B16-F1 melanoma-
bearing mice with a 212Pb-labeled peptide, they observed a dose-dependent increase in
mouse survival, with 45% of mice becoming disease-free after 200 µCi 212Pb[DOTA]-
Re(Arg(11))CCMSH [37]. In a different approach to 212Pb delivery to melanoma tumors,
Pikul et al. showed increased killing of B16-F10 melanoma cells with intracellularly deliv-
ered liposomes containing both 212Pb and 212Bi [38]. We are not aware of any prior mAb
radiolabeled with 203Pb/212Pb that is used experimentally or clinically for the therapy of
metastatic melanoma. However, valuable clinical information on the safety of 212Pb-labeled
antibodies comes from the studies by Meredith et al., who performed a dose escalation
clinical trial (five doses, between 7.4 and 21.1 MBq/m2 inclusive) and confirmed the safety
of trastuzumab conjugated to 212Pb when treating peritoneal carcinomatosis [39]. The same
group also showed that in a Phase 1 trial of HER2+ ovarian cancer targeted by trastuzumab
conjugated to 212Pb, there was a significant accumulation of 212Pb in cancer cells [40]. They
did not observe any side effects and concluded that alpha-emission produced a superior
therapeutic effect at the target site [40]. These safety data will help to determine the dose
range for future studies of 212Pb-mAbs in melanoma patients.
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5. Conclusions

MicroSPECT/CT with the 203Pb-c8C3 mAb enabled imaging of B16-F10 murine
melanoma tumors, and the 212Pb/212Bi-labeled c8C3 antibody in the 5–10 µCi dose range
demonstrated a dose-response in slowing down the tumor growth rate and increasing
the survival when compared to the untreated and radiolabeled control antibody groups.
The treatment with 212Pb-c8C3 was also well tolerated, with no observed hematologic or
systemic toxicity associated with treatment. However, the work also revealed the com-
plexities of targeting internal antigens such as melanin with a short-range alpha-emitting
radionuclide, which resulted in a biphasic tumor dose response with the efficacy of treat-
ment decreasing when the administered doses exceeded 10 µCi. These results underline the
need for more pre-clinical investigation of targeting melanin with 212Pb-labeled antibodies
before the clinical utility of such an approach can be assessed.
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