
Physics in Medicine & Biology
     

PAPER • OPEN ACCESS

Convolutional neural network based attenuation correction for 123I-FP-
CIT SPECT with focused striatum imaging
To cite this article: Yuan Chen et al 2021 Phys. Med. Biol. 66 195007

 

View the article online for updates and enhancements.

This content was downloaded from IP address 199.116.118.216 on 27/09/2021 at 22:49

https://doi.org/10.1088/1361-6560/ac2470
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsu3w4cqUzOMznxpKjNGSQPh0BJgfVuqak266XzetdLUSIarIn2VaWS98R3UW_i1gHehAqgDE6asrx42MApsx5UjOM9MUKeNwlX2ySQn26BPDEOytLHm1mp8txinjV0t7IA_o7QYs4bfei68qBbGcRkhp4vC5UE_oSFy5u6g-BUWilfGO6vHiF9nJDQJSEL0Og9_HMLreHjN5qIO0wHVXQJ7N4-gr3exgJLSpAT6DWihmX3k-DIbxUGNOlR1nMO1ILA8IWh5OWDsk-4f3u8NluP_4ZCFHTYtKBA&sig=Cg0ArKJSzKMt6WdJ_tHE&fbs_aeid=[gw_fbsaeid]&adurl=https://iopscience.iop.org/bookListInfo/physics-engineering-medicine-biology-series%23series


Phys.Med. Biol. 66 (2021) 195007 https://doi.org/10.1088/1361-6560/ac2470

PAPER

Convolutional neural network based attenuation correction for
123I-FP-CIT SPECT with focused striatum imaging

YuanChen1,Marlies CGoorden1 and Freek J Beekman1,2,3

1 Section Biomedical Imaging, Department of Radiation, Science andTechnology, Delft University of Technology, Delft, TheNetherlands
2 MILabs B.V., Utrecht, TheNetherlands
3 Department of TranslationalNeuroscience, BrainCenter RudolfMagnus, UniversityMedical CenterUtrecht, TheNetherlands

E-mail: y.chen-4@tudelft.nl

Keywords:multipinhole SPECT, SPECTquantification, attenuationmap, attenuation correction, convolutional neural network,Monte
Carlo simulation, 123I-FP-CIT

Abstract
SPECT imagingwith 123I-FP-CIT is used for diagnosis of neurodegenerative disorders like Parkinson’s
disease. Attenuation correction (AC) can be useful for quantitative analysis of 123I-FP-CIT SPECT.
Ideally, ACwould be performed based on attenuationmaps (m-maps) derived fromperfectly
registeredCT scans. Such m-maps, however, aremost times not available and possible errors in image
registration can induce quantitative inaccuracies in AC corrected SPECT images. Earlier, we showed
that a convolutional neural network (CNN) based approach allows to estimate SPECT-aligned
m-maps for full brain perfusion imaging using only emission data.Here we investigate the feasibility of
similar CNNmethods for axially focused 123I-FP-CIT scans.We tested our approach on a high-
resolutionmulti-pinhole prototype clinical SPECT system in aMonte Carlo simulation study. Three
CNNs that estimate m-maps in a voxel-wise, patch-wise and image-wisemannerwere investigated. As
the added value of ACon clinical 123I-FP-CIT scans is still debatable, the impact of ACwas also
reported to check inwhich cases CNNbasedAC could be beneficial. ACusing the ground truth
m-maps (GT-AC) andCNNestimated m-maps (CNN-AC)were comparedwith the case when noAC
was done (No-AC). Results show that the effect of usingGT-AC versus CNN-ACorNo-ACon striatal
shape and symmetry isminimal. Specific binding ratios (SBRs) from localized regions show a
deviation fromGT-AC2.5% for all threeCNN-ACswhileNo-AC systematically underestimates
SBRs by 13.1%. A strong correlation ( r 0.99)was obtained betweenGT-ACbased SBRs and SBRs
fromCNN-ACs andNo-AC. Absolute quantification (in kBqml−1) shows a deviation fromGT-AC
within 2.2% for all three CNN-ACs and of 71.7% forNo-AC. To conclude, all three CNNs show
comparable performance in accurate m-map estimation and 123I-FP-CIT quantification. CNN-
estimated m-map can be a promising substitute for CT-based m-map.

1. Introduction

SPECTwith I123 -FP-CIT can be used for visualization of the dopamine transporter (DaT) distribution in the
brain. This enables assessment of parkinsonian syndromes, particularly for differentiation of Parkinson’s disease
from essential tremor and for differentiation of dementia with Lewy Body fromAlzheimer disease (Catafau and
Tolosa 2004,Hauser andGrosset 2012, Oliveira et al 2021). Current clinical assessment of 123I-FP-CIT scans
reliesmainly on a visual inspection of the extent ofDaT reduction in the striatum, the striatal shape and its
symmetry (Djang et al 2012, Park 2012). Relative quantification by calculating the regional striatal uptake ratios
could reduce inter- and intra-observer variability andmay enable longitudinal studies tomonitor disease
progression (Winogrodzka et al 2001) and therapeutic effects (Parkinson StudyGroup 2002). For accurate
relative quantification, correction for photon attenuation in the patient head is recommended by guidelines
(Djang et al 2012,Morbelli et al 2020).
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Ideally, attenuation correction (AC)would be performed based on an attenuationmap (m-map)derived
froma perfectly registeredCT scan. This m-map provides the tissue attenuation coefficient at each voxel in the
patient. However, such aCT scan is often not available,may lead to increased radiation dose.Moreover, possible
errors in image registration can induce quantitative inaccuracies in SPECT images (Rajeevan et al 1998, Goetze
et al 2007, Crespo et al 2008). Besides theCT based approach,manually drawing an ellipse around the head
contour and assuming uniform attenuationwithin the ellipse is widely used for attenuationmap approximation
in brain SPECT studies (Tavares et al 2013, Rahmim et al 2017). This ellipsemethod, however, suffers from
observer subjectivity and insufficient estimation of the head contour and internal head anatomy.

Apart from the use of an additional CT scan or a simple ellipse, automatic approaches based only on SPECT
data have been investigated, which can bemainly classified into two categories. Thefirst category contains
sophisticatedmethods using SPECTphotopeak projections to estimate the attenuationmap and activitymap
either simultaneously bymeans of joint reconstruction (Censor et al 1979,Nuyts et al 1999, Krol et al 2001) or
independently by applying data consistency conditions (Welch et al 1997, Bronnikov 2000, Gourion et al 2002,
Yan andZeng 2009). This approach however has limited utility in clinical routine due to cross-talk artefacts,
instability and its computational complexity. The second category consists of contour-detectionmethods that
assume uniform attenuationwithin the contour. Such a contour can be obtained by automatic edge-detection in
projection space or on non-corrected SPECT images (Macey et al 1988, Younes et al 1988,Hebert et al 1995, Pan
et al 1996, Tossici-Bolt et al 2011). Automatic contour detection techniques are not commonly applied clinically,
possibly due to the increased complexity given theminimal improvement of accuracy compared to themanual
drawn ellipse approach. Interestingly, the value of SPECT images reconstructed from a scatter windowhas been
emphasized in these contour detection studies for edge determination (Macey et al 1988,Wallis et al 1995, Pan
et al 1996. This is justifiable as Compton scatter is the dominant photon-tissue interaction for clinical SPECT,
and the probability of Compton scatter is proportional to the tissue density (with amaximal probability at skull
and almost zero outside the body). Thus, the tissue density information embedded in scattered data could be
helpful to highlight the tissue boundaries.

Lately, deep learningwith neural networks has been applied to estimate m-maps using SPECT-data-only for
clinical (Shi et al 2020) and simulated (Yu et al 2021) 99mTc-tetrofosminmyocardial scans and PET-data-only for
clinical 18F-FDGbrain PET scans (Liu et al 2018, Reimold et al 2019). Our group has recently also demonstrated
a convolutional neural network (CNN) approach to estimate m-maps for 99mTc-HMPAO full brain perfusion
scans (Chen et al 2021) based on aMonte Carlo (MC) study assuming amulti-pinhole clinical SPECT geometry
(G-SPECT-I (Beekman et al 2015)). In this study, both the primary and scattered photons fromSPECT emission
datawere used viamultiple image reconstructions fromdifferent energy windows to obtain asmuch attenuation
information as possible. Using thesemulti-energy SPECT images, a patch-voxel CNNwith an encoder
architecture was implemented to transform a 4D SPECTpatch (3D SPECTplus one energy dimension) to a
single attenuation coefficient for the central voxel of the patch. Such a patch-voxel approachwas used due to its
advantage of requiring a reduced number of parameters and providing an increased amount of training data
compared to the full-image to full-image approaches e.g. U-Net (Ronneberger et al 2015). Accurate attenuation
mapswere obtainedwith the proposedCNNapproach for the 99mTc-HMPAO full brain perfusion scans.

For I123 -FP-CIT SPECT, the activity distribution ismore localizedwhile the amount of activity in the brain is
lower (standard injection dose of 185MBq) compared to a brain perfusion scan (standard injection dose of 925
MBq), which leads to a limited number of primary and scatter events being captured and potentially utilized.
Additionally, clinical assessment of a 123I-FP-CIT scan often uses only a few transaxial slices around the striatum
(e.g. 20mm thick slices (Winogrodzka et al 2001)) rather than the full axial length of the brain. Previously, we
demonstratedwith a simulation study that for 123I-FP-CIT scans, focused striatum imagingwith a confined axial
length canmaximize the count yield without sacrificing image quality (Chen et al 2018). In case only a few
SPECT slices are scanned, m-maps that could be beneficial for I123 -FP-CIT SPECTACmay not be fully
estimated. Therefore, the validity of the CNNbasedmethod for the axially focused 123I-FP-CIT scans needs to be
investigated.

The aimof this paper is to verify the CNNbased approaches for automatic m-map estimation forG-SPECT-

I I123 -FP-CIT imaging. To this end, SPECTdatawere acquiredwith a protocol aimed at imaging a few slices
centered at the striatumbased on theG-SPECT-I geometry. Besides the patch-voxel CNN that was implemented
in our previous work, we also tested two other networks that have been used in relevant recent studies which
estimate m-mapswith a patch-patch or image-image basedmethod (Liu et al 2018, Shiri et al 2020, Shi et al
2020). The proposed strategywas evaluated usingMC simulations based on theG-SPECT-I geometry.
Additionally, as the added value of ACon clinical 123I-FP-CIT scans is debatable, the impact of ACwas also
reported to check inwhich cases CNNbasedAC could be beneficial. Quantitative accuracy of theCNN
approachwas assessed on the network estimated m-maps and on attenuation corrected SPECT images.
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2.Methods

2.1. G-SPECT-I system
TheG-SPECT-I (Beekman et al 2015) consists of nine large-areaNaI stationary detectors, amulti-pinhole
collimator and a precisely controlled xyz-stage used for bed translation (see figure 1). All pinholes are
simultaneously ‘viewing’ a central volume fromwhich complete data is obtainedwithout any bedmovement.
This central volume is thus referred to as the complete data volume (CDV, see figure 1). For a scan of an object
larger than theCDV, the bed is translated to extend the scanning regionwith sufficient sampling. In this work, a
total number of 8 bed translations (2 axial translations combinedwith 4 transaxial translations)was used based
onfindings inChen et al (2018) for an optimal focused striatum scan tomaximize the count yield. This bed
translation trajectory ensures an axial scanning length of about 57mmwhich is long enough to cover the entire
striatum (35mm). All pinhole projections from all bed positions together were used simultaneously for image

Figure 1. Illustration of theG-SPECT-I scanner (the left image)when a small-bore collimator dedicated for brain imagingwas
mounted, and the focused striatum imaging strategy (the right image). TheCDV is the volume ‘seen’ by all pinholes; it has a transaxial
diameter of 100mmand an axial length of 60mm.The patient bed can be shifted in xyz directions to position different parts of the
patient head into theCDV and thus extend the scanning regionwith sufficient sampling.With the focused striatum imaging strategy,
the scanning region is confined in axial direction tomaximize the count yield from the striatum. The data truncation region is ‘seen’ by
only part of the pinholes and thus sampling is not complete.

Figure 2. Illustration of SPECTdata simulation. (a)MCsimulations of realistic I123 -FP-CIT scans; for each phantom, an activity and
attenuationmapwere generated andwere used forMC simulation. Background counts due to cosmic radiationwere emulated and
added to theMC simulated projection data tomake the simulationmore realistic. Five SPECT reconstructionswere performed from
different energywindows. The image set was used as input toCNN forμ-map estimation. (b)Noise-free simulated images onwhich
the effects of attenuation correctionwith differentμ-mapswere studied. TheMC simulation uses the attenuationmapwith each
region assignedwith amaterial (skull or brain), while for noise-free simulations, themapswith each region assignedwith an
attenuation coefficient were used (subject to the different requirements of both simulators).
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reconstruction using the so-called scanning focusmethod (Vastenhouw andBeekman 2007). Other details
concerningG-SPECT-I are described inChen et al (2018).

2.2. Simulated SPECT scans
Tomimic realistic SPECT scans, full systemMC simulationswere performed. TheseMC simulated scanswere
used as input to theCNN for m-maps estimation. Accuracy of ACusing these m-mapswas evaluated
subsequently. This evaluationwas done onMC simulated realistic images as well as on noise-free simulated
SPECT images. The latter noise-free images were involved to better visualize and quantify AC effects when using
different m-maps. Both simulationmethods are summarized infigure 2 and are described inmore detail below.

2.2.1. Digital phantoms
The publicly available Brainweb dataset containing 20 phantoms generated fromnormal subject scanswas used.
For each phantom, an activity distributionmap and an attenuationmapwere generated (see figure 2). The
activitymapwas obtained by assigning I123 -ioflupane (159 keV) to the striatum and the background (which is
the rest of the brain and the skin)with a concentration ratio in the range of 1.5:1–11:1 as typically seen in clinical
settings (Dickson et al 2010, Niñerola-Baizán et al 2018). Besides, wemade sure that the concentration in the
putamenwas not higher than in the caudate.We also allowed the concentrations in striatal substructures
(caudate and putamen) to differ for the different hemispheres. In this way, normal and abnormal tracer uptakes (
i.e. uniform global striatal uptake reduction as well as unilateral and bilateral uptake asymmetries between
caudate and putamen) could be covered, as inNiñerola-Baizán et al (2018). A total activity of 7.4MBq in average
was put in the phantom (resembling an injected dose of 185MBq and a brain uptake of 4%at the time of imaging
(Volterrani et al 2019)). This activity was set slightly differently for each phantomwith a standard deviation s of
10% (normally distributed).

The attenuationmapwas obtained by tissue segmentation. Regions of skull, skin, blood,muscle, brain,
water, fat and air structures were segmented. These regionswere assignedwith a respective attenuation
coefficient of 0.232, 0.148, 0.143, 0.141, 0.140, 0.135, 0.123 and 0 cm−1. These values were calculated based on
the chemical component of each tissue and themass attenuation coefficient given inNIST (National Institute of
Standards andTechnology 2021) for photons at 159 keV (Hubbell and Seltzer 1995). Thismapwith designated
coefficients was considered to be theGT m-map that was later used for training of the neural networks.
Phantomswere randomly rotated (−20° to 20°) and translated (−10 to 10mm) tomake the datasetmore
variable. All phantomswere down-sampled using trilinear interpolation to a voxel size of 1.0×1.0×1.0mm3

from their original voxel size of 0.5×0.5×0.5mm3.

2.2.2.MC simulated realistic projections
MCsimulations of the 20 phantomswere performedwithGeant4 Application for Tomographic Emission
(GATE) (Jan et al 2004)with geometry based onG-SPECT-I. TheMC simulation assumes a total scan time of
30 min Besides, cosmic background counts were added to theMCprojections tomake the simulationmore
realistic.More details of theMC simulation inGATE and the cosmic background counts emulationwith the
G-SPECT-I systemwere described inChen et al (2021) .

2.2.3. Noise-free simulated projections
For all 20 phantoms, noise-free forward projectionswere generatedwith theVRT simulator. This simulator
takes the system geometry (i.e. the precise pinhole and detector positions and detector orientations) as input and
models the collimator and patient attenuation but ignores scatter (Goorden et al 2016,Wang et al 2017), as
shown infigure 2.No noise or cosmic radiation counts weremodeled in theVRT simulated projections.

2.2.4. Image reconstruction
A systemmatrix calculated based on theVRT simulator was used for image reconstruction of theMC simulated
projections and the noise-free simulated projections (seefigure 2). No patient ACwas performed during
reconstruction. All image reconstructions were performed on a 1.5mmgrid, larger than the voxel size of the
digital phantoms, tomimic a continuous activity distribution reconstructed on a discrete grid. Similarity
regulatedOSEM (Vaissier et al 2016)with 8 subsets and 10 iterationswas implemented for image
reconstruction.

As demonstrated in our previous study (Chen et al 2021), accurate estimation of the m-maps can be obtained
when photopeak aswell as scatter window reconstructed imageswere used as input toCNN.Therefore, five
SPECT reconstructions were conducted fromdifferent energy windows for theMC simulated data (see figure 2).
One reconstruction used the photons detected in the photopeakwindow combinedwith a triple energy window
scatter correction (32 keVwidth centered at 159 keV for the photopeakwindow and 6.4 keVwidth at each side
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for scatter correction) and four additional reconstructions were done fromdifferent windows (32 keVwidth
centered at 139, 119, 99 and 79 keV respectively). For theVRT simulated projection data, only primary photons
were simulated and could thus be reconstructed, resulting in noise- and scatter-free SPECT scans (see figure 2).

2.3. CNN m-map estimation
TheMC simulated SPECT scanswere preprocessed and subsequently used as input to theCNNs for m-map
estimation. These steps are explained in detail in the subsections below.

2.3.1. Image preprocessing
The pre-processing ofMC simulated images includes a step of cylindricalmasking (diameter 240mm) to
remove artefacts outside the head and a step of intensity-normalization to ensure a similar dynamic range for
scans fromdifferent phantoms, as inChen et al (2021). Besides, the input SPECT images were down-sampled
(tri-linearly) to a voxel size of 3×3× 3mm3 from an original voxel size of 1.5×1.5×1.5mm3 before being
fed into the neural network to speed up the training process with a relative larger image voxel size.

2.3.2. CNNarchitectures
The patch-voxel CNN that estimates m-maps voxel-wise with an encoder architecture as implemented in our
previousworkwas used (Chen et al 2021). Additionally, two networkswith an encoder–decoder architecture
that estimate m-maps in a patch-wise or image-wisemannerwere tested. Such an encoder–decoder architecture
has the advantage of preserving neighborhood information in the output space. For the three networks, 2D
patches in the spatial domain (xy plane)were used as input. This is to avoid inter-slice interference particularly
for slices close to the edge of the scanning regionwhere neighboring slicesmight suffer fromdata truncation
artefacts (note that there are only a limited number of slices in the scanning region due to the focused striatum
imaging strategy). Each 2Dpatch underwentmultiple stages of 2D convolutions and pooling (seefigure 3).
These three networks are explained below.

(1) Patch-voxel CNN: this network takes SPECT image patches centered at each voxel as input to predict the
corresponding attenuation coefficient of the central voxel from each patch as output (see figure 3). The
input image patch has a dimension of 21×21 voxels taken from the 2D transaxial slices× 5 energies, while
the output has a dimension of 1 voxel.

Figure 3.Network architecture of the patch-voxel, patch-patch and image-image CNN (Conv: 3×3 convolution; Pool: 2×2max
pooling; FC: fully connected;Upconv: 2×2up-sampling). Every convolutional layerwas followedwith a layer of batchnormalization
and a layer of ReLU activation. Each fully connected layer was followed by a sigmoid activation. The number offilters is indicated in
the figure below the layers.
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(2) Patch-patch CNN: this network takes SPECT image patches as input to predict the corresponding
attenuationmap patches at the same location in image space (seefigure 3). The input SPECTpatch
dimensions were set to have an even dimension due to the down-sampling up-sampling operations with
U-Net architecture. Thus, a dimension of 20×20 voxels× 5 energies was used as inputwith an output size
of 20×20 voxels. In the testing phase, the entire 2D image slicewas used in the network for prediction.
Thus, the attenuation coefficient of each voxel was themean value among predictions from all patches
covering that voxel (20×20 patches).

(3) Image-image CNN: this network has a U-Net architecture as in the patch-patch CNN, while here each slice
(72×80 voxels× 5 energies)was used as input to predict the attenuationmap for the corresponding slice
(72×80 voxels).

2.3.3.Model training
Trainingwas done onfive randomly selected phantomswhile testingwas performed on the remaining 15
phantoms. All CNNswere trainedwith 15k samples randomly selectedwith replacement in each epoch. For the
patch-voxel and patch-patchCNN, a balanced selection of the patches was ensured for the threemain tissue
classes (air, soft tissue and bone). Data augmentationwas performedwith random rotation (−20° to 20°) and
translation (−10 to 10mm). The networks were trained tominimize themean square error between the
predicted attenuation coefficient m and theGT m-map. TheAdamoptimizer (Kingma and Jimmy 2014)with
default settings and a batch size of 15was used in the training. No validation set was used to determine the
optimal epoch. The networkwas trained for 200 epochs for convergence. This workwas implemented using
TensorFlow.

2.4. ACusing the m-maps
Based on the m-maps estimated fromMC simulated data, an adaptedmulti-pinhole first-order Chang’smethod
(Chen et al 2021)was done to checkAC effects on SPECT images when using different m-maps. This adapted
multi-pinhole Chang’smethod first checks—at every bed position—if a voxel is seen by a pinhole. If yes, the
transmission along the corresponding projection line (from that voxel center to the pinhole center) is counted
andweighted by the pinhole’s sensitivity for that voxel. The transmission fraction for the corresponding voxel is
then the average transmission value among all projection lines that are counted.

2.5. Evaluation
2.5.1. Attenuationmaps
The accuracy of theCNNestimated m-mapwas evaluated by calculating the peak signal to noise ratio (PSNR)
defined in equation (1) and the structural similarity indexmetrics (SSIM) given by equation (3). In the
equations, n is the number of voxels involved in the calculation for each scan.Only voxels in the head (i.e. soft
tissue or bone) are taken into account. In equation (1),MSE is themean square error defined as in equation (2);
Max is themaximal image intensity of theGT m-map (0.232 cm−1 for the bone here). In equation (3), CNNm and

GTm are themean values of the CNNestimated andGT m-maps; CNN
2( )s and GT

2( )s represent the variances of
the CNNestimated andGT m-map; CNN GT,s is the covariance of theCNNestimated andGT m-map.Higher
values of PSNR and SSIM indicate better quality of the estimated m-map.Definitions of theMSE, PSNR and
SSIM are given below
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2.5.2. Attenuation corrected SPECT images
TheCNNestimated m-mapswere evaluated on SPECT images via a step of AC. As the presence of noise in the
MC simulated imagesmay hamper visualization of AC effects with different m-maps, assessment of m-mapswas
done on the noise-free simulated SPECT images and on the noisyMC simulated SPECT images.
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2.5.2.1. Visual inspection
SPECT images that are corrected using theCNNestimated m-maps (CNN-AC)were compared to the ground-
truth-AC (GT-AC) image that uses theGT m-maps for correction. All SPECT images shown in this paper for
visual comparisonswere smoothed using a 3DGaussian post filter with 6mmFWHM.

2.5.2.2. Relative quantitative analysis
Regional striatal uptake ratios were calculated in localized regions of interest (ROIs). The specific binding ratio
(SBR) and the asymmetry index (AI)were calculated as defined by

SBR
C C

C
, 4

target bkg

bkg

( )=
-

AI
SBR SBR

SBR SBR
2 100% 5R L

R L

( )= ´
-
+

´

Here Ctarget and Cbkg are themeanDaT image intensity in the target ROI and the reference ROI respectively,
while SBRR and SBRL refers to the SBR of a target ROI in the right and left hemisphere respectively. Eight
localized sub-regions of the striatumwere defined as the target ROI (seefigure 4). These localizedROIs in the
striatumwere drawnwith a diameter of 10.5mm in the transaxial plane andwere placed over 9mmslices in the
axial direction (thus each has a volume of 0.78ml). The reference region (seefigure 4)was obtained using the
Southamptonmethod (Tossici-Bolt et al 2006).

The deviation for the SBRs andAIs calculated from theCNN-AC imageswere compared to those ofGT-AC
as in equations (6) and (7). In the equations, DEVSBR and DEVAI denote the SBR andAI deviations from theGT-
AC image. The deviation of AI is calculated directly by subtracting the AIGT AC- since AI is already a normalized
index expressed in percentage

DEV
SBR SBR

SBR
% 100%, 6SBR

CNN AC GT AC

GT AC

( ) ∣ ∣ ( )=
-

´- -

-

DEV AI AI% . 7AI CNN AC GT AC( ) ∣ ∣ ( )= -- -

Besides evaluating the deviations, correlations between SBRs derived from images with different ACmethods
and those of theGT-ACwere assessed. The intra-class correlation coefficient (ICC) (Shrout and Fleiss 1979,
McGraw and Seok 1996)was calculated using the two-waymixed effectsmodel for absolute agreement
assessment as in Rosario et al (2011). High values of ICC values indicate a strong agreement between two sets of
measurements in their absolute values. Additionally, Pearson’s correlation coefficient (r )was also included to
measure the linear association between two sets ofmeasurements.

2.5.2.3. Absolute quantification in kBq ml−1

Compared to relative quantification, absolute quantification assesses regional tracer concentrations rather than
uptake ratio between regions. Absolute quantification is currently rarely implemented for 123I-FP-CIT scans.
Applications on PET and SPECT studies (Beauregard et al 2011, ElNaqa 2014) showpotential value of such an
assessment, thuswe include it in the present work.Here, the striatal binding value (SBV) is calculated using the
mean concentration fromaROI (kBqml−1). The deviation for the SBVs calculated from theCNN-AC images
were compared to those ofGT-AC according to equation (8)

DEV
SBV SBV

SBV
% 100%. 8SBV

CNN AC GT AC

GT AC

( ) ∣ ∣ ( )=
-

´- -

-

Figure 4. Illustration of the eight localizied regions and the reference ROI for quantitative analysis. Regions of caudate, anterior
putamen,middle putamen and posterior putamen in the left and right hemisphere are depicted. Each region has a diameter of 10.5
mmand an axial length of 9mm (thus a volume of about 0.78ml). Caud: caudate; Ante Put: anterior putamen;Mid Put:middle
putamen; Post Put: posterior putamen. The reference ROIwas generated using the Southamotonmethod.
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For all the quantitative analysis,measurements were performed on the unfiltered SPECT images to avoid any
bias fromfiltering.

2.5.3. Comparison to ellipse basedmethod
A traditional ellipse based m-map approximationmethodwas included for comparison. To reduce the
subjectivity ofmanual placement, an ellipse was automatically defined based on a threshold of 12%on the
reconstructed SPECT images as in Papanastasiou et al (2020). Specifically, SPECT imageswere re-oriented to the
original symmetric position (remind that phantomswere rotated prior to theGATE simulation tomake the
datasetmore diverse). Subsequently, the length of the short andmajor axis of the ellipse was set to be the
maximum x and y dimension of the contour (which is determined by the threshold). A visual check of the
ellipse (and adjustment if needed)was done tominimize a possible shift between the ellipse and SPECT image.
Finally, the ellipse was uniformlyfilledwith an attenuation coefficient of m=0.14 cm−1 (corresponding to
brain tissue) as commonly used in relevant work (Tossici-Bolt et al 2017,Morbelli et al 2020, Papanastasiou et al
2020). AC results using thefitted ellipse based m-maps is denoted as Fit-ellipse AC.

3. Results

3.1. m-maps
Figure 5 gives a comparison of theCNNestimated and theGT m-maps. Alongside the m-map slices, the
corresponding SPECT image slices showing the tracer distribution are also included in thefirst two rows.Note
that all CNN estimated m-mapswere obtained from theMC simulated SPECT image sets (reconstructed from
different energy windows). The center of the striatum in axial direction is defined to be at 0mm.

Figure 5.Comparison of the m-maps obtained using different CNNs. Slices within an axial length of 48mm that are essential for a
123I-FP-CIT scan are shown.Note that all CNNestimated m-mapswere obtained from theMC simulated SPECT image sets
(reconstructed fromdifferent energy windows).
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Table 1.Mean and standard deviations of PSNR and SSIM for the m-maps
obtainedwith variousCNNmethods. The errors were calculated from the
slices within an axial length of 48mm that are essential for I123 -FP-CIT
SPECT. P values were calculated using paired t tests.

PSNR SSIM p

Patch-voxel

CNN m-map

32.1±2.0 0.89±0.03 < 0.001

Patch-patch

CNN m-map

33.7±2.0 0.92±0.02 < 0.001

Image-image

CNN m-map

33.2±1.7 0.91±0.03 < 0.001

Figure 6.Comparison of the attenuation corrected SPECT images. Attenuation correction results performed on both the noise-free
smulated scans (the left part) and on noisyMC simulated scans (the right part) are displayed.
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Figure 5 shows that with the axially focused 123I-FP-CIT imaging strategy, m-maps centered at the striatum
that are essential for 123I-FP-CIT scan inspection and quantification could be accurately estimatedwith the three
CNNarchitectures. Among the three CNNs, the patch-voxel CNNgives slightlymore noisy m-maps. This (i.e.
the noise on the m-map) is circumvented in the patch-patch and image-image CNNswhere neighborhood
information is preserved in the output space with an encoder–decoder framework.

Table 1 provides the PSNR and the SSIM results of the CNNestimated m-maps. Voxels for slices within the
48mmaxial range that are relevant for 123I-FP-CIT assessment were used for the calculation. This table shows
that the patch-voxel CNNgives slightly inferior PSNR and the SSIMvalues. However, differences for results
obtained from the three networks are small.

3.2. SPECT imageswith different AC
3.2.1. Visual inspection
Avisual comparison of the attenuation corrected SPECT images aswell as a line profile comparison are shown in
figures 6 and 7 respectively. Figure 6 shows that the striatum structure looks similar for all ACmethods including
No-AC. Compared to theGT-AC, theNo-AC gives an increased activity distribution at the periphery and

Figure 7. Image profiles taken from the noise free simulated SPECT images in figure 6. The profiles are taken from the yellow lines
indicated in figure 6 (images on thefirst row of the left panel). The lines arewith awidth and thickness of 4.5mm.A zoomed view of
some parts of the profiles are displayed at the top part of thefigure.

Figure 8.Bland–Altman plots for different ACmethods. The SBRs plotted on the horizontal axis are themean values of theGT-AC
and the ACmethod under investigation in each plot.Measurements taken from all 15×8 regions are plotted. Values are calculated
fromnoise-free simulated SPECT images.
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outside of the brain. The differences between all three CNN-AC and theGT-AC are small as confirmed in
figure 7.

3.2.2. Regional quantitative analysis
Figure 8 gives Bland–Altman plots of the SBRdifferences from theGT-AC image across 120 regions (eight sub-
regions for all 15 test subjects). The deviations in percentage for the SBRs andAIs are summarized in the figure.
Figure 9 gives the scatter plot of the SBRs for correlation analysis.

Figure 9.Correlation betweenGT-AC andCNN-ACs, as well as betweenGT-AC andNo-AC for the SBRs. Values are calculated from
noise-free simulated SPECT images.

Figure 10.Comparison of the SBVmeasurements when using different ACmethods in the eight sub-regions of the striatum. The
mean and standard deviation across 15 test subjects are displayed for each region.Measurements are calculated on noise-free
simulated SPECT images. Caud: caudate; Ante Put: anterior putamen;Mid Put:middle putamen; Post Put: posterior putamen.

Table 2.Deviation (mean standard deviation) of the SBVs from theGT-AC across 120 regions (8 sub-regions for all 15 subjects).
Measurements are calculated on noise-free simulated SPECT images. The term ‘PV’, ‘PP’ and ‘II’ denotes patch-voxel, patch-patch and
image-image respectively.

DEVSBV (%)
Caudate Ante. Put. Mid Put. Post. Put.

Mean
L R L R L R L R

PVCNN-AC 1.5  1.3 2.1  1.9 2.3 2.3 2.3 2.4 2.4  2.4 2.2  2.6 2.4 2.3 2.1 2.7 2.2 2.2

PPCNN-AC 1.4  1.2 2.2  1.9 1.5 1.2 2.6 2.4 1.5  1.1 2.6  2.6 1.4 1.0 2.6 2.8 2.0 1.8

II CNN-AC 1.6  1.0 1.3  1.5 2.1 1.8 1.6 2.5 1.9  1.9 1.7  2.7 1.7 1.7 1.8 2.8 1.7 2.0

Fit-ellipse AC 16.5

 7.3

16.9 7.2 15.6

 7.3

16.0

 7.2

15.5

 7.3

15.8

 7.1

15.6

 7.1

15.8

 6.9

16.0  7.2

No-AC 72.1

 0.7

72.0 0.6 71.7

 0.9

71.3

 0.7

71.9

 0.9

71.3

 0.7

71.9

 0.8

71.3

 0.7

71.7 0.7
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Figure 8 shows the small differences between the three CNN-ACs andGT-AC for the SBRs (differences are
close to the zero line). Among the three CNNmethods, the patch-voxel CNN-AC shows a slightlymore
diverging distribution and thus a larger difference of the SBRs fromGT-AC. The deviation from theGT-AC is
2.5% for all three CNN-ACs. This deviation reads as 3.5% for Fit-ellipse AC.No-ACunderestimates SBRs by
13.1% systematically, as shownby the strong correlation (r 0.99) between theGT-ACbased SBRs and the
values obtainedwithNo-AC infigure 9. The impact of different ACmethods on asymmetry index is small
(within 3.6%).

3.2.3. Absolute quantification in kBq ml−1

The capability to obtain accurate regional uptake valueswith different ACmethods is shown infigure 10. The
SBVs calculated from the phantoms are included as a reference. Figure 10 shows that compared to the digital
phantom, the ground-truth-AC suffers from slight inaccurate estimation of the SBVs. Thismight be due to the
imperfect ACmethod or the partial volume effects. Besides, the three CNN-ACmethods achieve comparable
SBV accuracies as theGT-AC. The deviation from theGT-ACwas summarized in table 2, which shows amean
deviation of within 2.2% for all three CNN-ACs and amean SBVdeviation of 16.0% and 71.7% for the Fit-
ellipse AC andNo-AC respectively.

3.3. Computation
The training took about 1.8 h, 1.9 h and 1.2 h for the patch-voxel, patch-patch and image-image CNN
respectively, when running on a singleNVIDIA 2080Ti graphics processing unit with 11GBofmemory. Testing
was done in 28.4 s and 60.0 s and 1.3 s for the respective network to generate the attenuationmap for each
patient scan.

4.Discussion

In the present work, we demonstrated the feasibility of CNNbased approaches for m-map estimation using only
SPECTdata from axially focused I123 -FP-CIT scans. The approaches were tested on a focusingmulti-pinhole
system in aMC simulation study.

Our visual results show that ACdoes not affect the shape and symmetry of the striatummuch. Themain
visual effect of AC is that the activity distribution at the periphery and outside of the brain can bewell estimated,
whichmay otherwise be incorrectly enhanced (as theNo-AC images show). For relative quantification of the
SBRs, deviations from theGT-ACwerewithin 2.5% forCNN-AC.No-AC systematically underestimates SBRs
by 13.1%. A strong correlationwas observed between theGT-ACobtained SBRs and the values obtainedwith
CNN-AC ( r 0.99). Absolute quantification in terms of the SBVhas a deviation fromGT-ACwithin 2.2% for
CNN-AC and of 71.7% forNo-AC.

Currently, the clinical value of AC for I123 -FP-CIT scans is debated (Lange et al 2014, Lapa et al 2015). Based
on our results, the impact of AC is likely insignificant for diagnostic purposes when assessment is based on visual
inspection of the striatum. This is alignedwith previousfindings (Lange et al 2014, Akahoshi et al 2017).
Likewise, omitting ACmay not be an issue for relative quantificationwhen I123 -FP-CIT scans at a single clinical
site are processed using the same protocols (e.g. all without AC), given the strong correlation between theGT-
ACobtained SBRs and those ofNo-AC.However, in case that AC is a step in a standardized protocol or a precise
measurement of the SBR is helpful (e.g. formulticenter studies where AC is already performed), AC can be
performed. This is certainly truewhen absolute quantification is preferred. Absolute quantification (for which
AC is required) is presently rarely applied on I123 -FP-CIT scans. A recent study suggests that it can be helpful for

differentiation of normal and pathological I123 -FP-CIT scans (Jreige et al 2020). In these cases, using theCNN
estimated m-map allows to obtain accurate results, without suffering frompossible image registration errors and
eliminating the need ofmanually drawing an ellipse. Apart from I123 -FP-CIT scans, in other applications where
a low activity level is present in themajority of the head, e.g. for tumor therapy imagingwith 131I-labeled 81C6
(Cokgor et al 2000), a CNNmay also be applied to estimate m-maps for precise quantification of the tracer
uptake.

A traditional ellipse basedmethodwas included in this work for comparison. Results show that the Fit-
ellipse ACobtains a DEVSBR and a DEVSBV of 3.5% and 16.0% respectively, which are smaller than theNo-AC
results (13.1% and 71.7% respectively) and are larger than all three CNN-AC (within 2.5%and 2.2%
respectively). Note that the difference of the SBVs between Fit-ellipse AC andGTACmay be diminished by
simple adjustments of the ellipse u-map, e.g. by assigning a different m value than the one used here or by
changing the threshold for the ellipse contour detection. The SBVdeviations from theGT-AC reported in the
present workwas valid solely for the approach implemented here. Besides, here an ellipse was generated to
ensure that the symmetry of the AC SPECT images was preserved asmuch as possible. In clinical practice,
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placement of the ellipse could be affected by imperfect re-orientation of SPECT images, noise, etc, apart from the
subjectivity due tomanual placement. For example, one study reported that while uniform attenuationwith
ellipse drawn around a transmission image caused 5% error, placement of ellipse on the emission image caused
15% error (Rajeevan et al 1998).

In the present work, three CNN frameworks that estimate m-map in a voxel-wise, patch-wise and image-
wisewaywere tested for the task of interest.We found that the patch-voxel CNNwhichwas used in full brain
perfusion imaging (Chen et al 2021) gave slightly noisier m-maps herewhen applied on I123 -FP-CIT scans,
probably due to the lower activity levels of the latter. Compared to the initial patch-voxel CNN, the patch-patch
and image-image CNNgave slightly better m-maps in terms of smoothness and cleanness due to the
incorporation of neighboring information in the output space. Among the three frameworks, the image-image
architecture attains a slightly better performance in terms of DEVSBR and DEV ,SBV and additionally has the
advantage of fast computation in training and testing. The image-image CNN treats the image transformation
problem (frommulti-energy SPECT images to attenuationmap) from a global view. In contrast, the patch-voxel
and patch-patchCNN take local regions and thus focusmore on details. For 123I-FP-CIT scans, the m-maps
essential for interpretation and quantification are ‘oval-shaped’with rather simple structures. Thismight favor
the use of amethod as image-image CNN that ensures a global consistency. Nevertheless, with the focused
striatum imaging strategy, m-maps essential for 123I-FP-CIT SPECT inspection and quantification could be
accurately estimatedwith theCNNapproach. All the three CNN frameworks could achieve precise
measurement of the regional uptake values.

End-to-endmethodsmight be valid alternatives for SPECTAC alternative to theCNNμ-map estimation
approach proposed in this study. Suchmethods as proposed in Yang et al (2019), (2020), (2021), Dong et al
(2020), Torkaman et al (2021) directly generate attenuation corrected SPECT/PET images as output, and thus
eliminate the procedure of performing anACusing theμ-map.We opted for a two-step strategywith an
intermediateμ-map estimation step as it is less of a black box compared to the end-to-end approach. For
example, in outlier cases that patient SPECTdatawere not represented in the training set, e.g. exceptionally
abnormal brain anatomy or presence ofmotion artefacts, one could cease ACusing theCNNestimatedμ-maps
when the estimatedμ-map appears incorrect.

Limitations of the present work include a lack of validation using clinical data. Results presented in this work
were based on a limited dataset fromMC simulations of subjects with normal brain anatomies. The clinical value
of the proposedmethodwould be better validated on a large dataset with diverse brain anatomies from real
patient scans. Besides, the proposedmethodwas tested on themulti-pinhole G-SPECT-I geometry as this is an
ultra-high resolution system currently under development at our institute. TheCNNbased approachmay be
translated to other SPECT scanners, yet the accuracy would need to be evaluated.

5. Conclusion

Wehave demonstrated the feasibility of a CNNbased approach to generate m-maps using only SPECTdata
from I123 -FP-CIT scanswith a focused striatum scan strategy.Our results based on aMC simulation study show
that the impact of GT-AC versus CNN-ACorNo-ACon striatal shape and symmetry isminimal. A strong
correlation is observed between theGT-ACbased SBRs and the values obtainedwithCNN-AC andNo-AC.
While SBRs and SBVs are underestimated byNo-AC, they can be precisely quantifiedwithCNN-AC. Thus,
CNNestimated m-map could be a promising substitute for CT m-map, while further validationwith patient
scans in clinical cohorts is needed.
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