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Abstract

Objective: Dose optimization and pharmacokinetic evaluation of a-particle emitting radium-223 dichloride
(223RaCl2) by planar c-camera or single photon emission computed tomography (SPECT) imaging are ham-
pered by the low photon abundance and injected activities. In this study, we demonstrate SPECT of 223Ra using
phantoms and small animal in vivo models.
Methods: Line phantoms and mice bearing 223Ra were imaged using a dedicated small animal SPECT by
detecting the low-energy photon emissions from 223Ra. Localization of the therapeutic agent was verified by
whole-body and whole-limb autoradiography and its radiobiological effect confirmed by immunofluorescence.
Results: A state-of-the-art commercial small animal SPECT system equipped with a highly sensitive collimator
enables collection of sufficient counts for three-dimensional reconstruction at reasonable administered activities
and acquisition times. Line sources of 223Ra in both air and in a water scattering phantom gave a line spread
function with a full-width-at-half-maximum of 1.45 mm. Early and late-phase imaging of the pharmacokinetics
of the radiopharmaceutical were captured. Uptake at sites of active bone remodeling was correlated with DNA
damage from the a particle emissions.
Conclusions: This work demonstrates the capability to noninvasively define the distribution of 223RaCl2, a
recently approved a-particle-emitting radionuclide. This approach allows quantitative assessment of 223Ra
distribution and may assist radiation-dose optimization strategies to improve therapeutic response and ulti-
mately to enable personalized treatment planning.

Keywords: a-particle radiotherapy, molecular imaging, pharmacokinetics, theranostics

Introduction

Prostate cancer afflicts nearly one in seven men globally.1

When detected early and confined to the organ, it can be
successfully treated with external beam radiotherapy or sur-
gery. However, there is no effective long-term treatment for

non-organ confined and metastatic prostate cancer. Dis-
seminated disease is often treated primarily with hormonal
therapy, to which prostate cancer inevitably develops re-
sistance. This fatal stage of the disease is characterized
by metastatic seeding of the axial and then appendicular
skeleton. Osseous metastases are often painful, reduce bone
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quality, reduce structural integrity leading to fracture, and
invade the bone marrow and its hematological and stromal
compartments. Bone metastases contribute to significant
disability and eventually death.2,3

Radium-223 dichloride (223RaCl2) is a recently approved
a-particle-emitting radiopharmaceutical for application in
men with castration-resistant metastatic prostate cancer. The
radiotherapy agent demonstrated an improved median sur-
vival benefit of *14 weeks versus placebo in a large-scale
Phase III clinical trial.4 Subsequent subgroup analysis en-
dorse these results, even for patients pretreated with che-
motherapy. The a-particle endoradiotherapy approach also
provided palliative relief, extended time to first symptom-
atic skeletal event, and reduced incidence of spinal cord
compression.5,6

Radium is a divalent cation that is thought to be incor-
porated within the bone matrix at sites of active remodeling
as a calcium-mimetic agent. Most of the 28.2 MeV emitted
by 223Ra and its decay chain is in the form of four a par-
ticles. These charged helium nuclei exhibit high linear en-
ergy transfer, damaging nearby cells while sparing distant
tissues from ionizing radiation.

The efficacy of the treatment combined with its favorable
toxicity profile has encouraged the investigation of strate-
gies toward improved and extended dosing (Clinical-
Trials.gov identifier: NCT02023697 and NCT01934790). At
present, 223RaCl2 is administered on a per weight basis in-
dependent of patient disease characteristics or specific up-
take distributions. To facilitate improved and personalized
treatment regimes and to predict response, several imaging
initiatives have been undertaken. Research has focused on
imaging of either surrogate bone scan agents (such as 99mTc-
methyl diphosphonate or [18F]-NaF) or direct 223Ra emis-
sions to plan therapy.7,8

Direct determination of uptake at sites of disease using
223Ra itself has thus far been limited to scintigraphic im-
aging in men.9 These efforts are confined to planar scans,
as count rates have been deemed insufficient for single
photon emission computed tomography (SPECT) recon-
struction. Efforts to quantitate images are in the early stages,
but are restricted by low count rate, substantial scatter, and
attenuation.10–12 Despite the difficulties, these studies have
revealed important features of the in vivo fate of the radio-
nuclide. Of note, a considerable proportion of the initial
activity is rapidly incorporated into the gastrointestinal tract
and excreted. Adverse events caused by dose adsorbed here
include intractable nausea and gastrointestinal symptoms
(diarrhea, constipation, and loss of appetite), which may lead
to cessation of treatment.13

We have recently shown that the pharmacokinetics of
223Ra in animal models recapitulates those found in men
using ex vivo measures including c-counting, a-camera im-
aging and whole-body autoradiography.14 This establishes
murine models as an attractive platform to better understand
the effects of and to optimize treatment with 223Ra. Exciting
developments in the SPECT field with respect to both in-
strumentation and reconstruction have motivated development
of next-generation preclinical systems. High-resolution and
sensitivity of imaging and therapeutic radionuclides in pre-
clinical models have yielded insight into experimental agent
development down to resolution as low as 0.25 mm.15–17 Here
we report the application of tomographic imaging of radium-

223 in mice for noninvasive delineation of radionuclide dis-
tribution at sub-microcurie injected activities with the poten-
tial to monitor dose distribution in real time.

Methods

Radium-223 and characterization

223RaCl2 was produced using a laboratory-built Actinium-
227 microgenerator, as previously detailed.18 In brief, meth-
anol/nitric acid was used to elute radium-223 from parental
227Ac and 227Th. Using strong anion exchange chromatog-
raphy, the purified material (solvated in 0.03 M citrate) was
verified using a high purity germanium c-spectrometer
(Detective-EX-100; Ortec). For the representative spec-
trum, a column fraction was placed on a platform at a
distance of 2 cm from the detector and counted for 300 s.
Spectra were initially analyzed in the Maestro software
package (Ortec). A background spectrum (in the absence of
a radioactive sample) was also acquired for 360 s with no
detection of activity. Annotation of the spectra was pro-
vided from the Evaluated Nuclear Structure Data File
hosted at the National Nuclear Data Center.19

Imaging system

The U-SPECT system (MILabs, Utrecht, the Nether-
lands) is a dedicated preclinical imaging platform. It com-
prises three large panel (51 · 38 cm2) NaI detectors (9.5 mm
thick crystals) with digital electronics providing full list
mode acquisition, arranged in a triangular configuration.
Subjects are placed in a multi-pinhole collimator by inser-
tion on an automated (motion-controlled) and heated bed.
The XUHS multi-pinhole tungsten collimator (54 pinholes
of 2.0 mm diameter per pinhole, 48 mm tube diameter;
MILabs) used in this study has a maximum resolution of
0.85 mm, and sensitivity of >13 kcps/MBq or 1.3% for
99mTc.16 The animal was placed on a heated imaging bed
with integrated inhalation anesthesia, which was translated
through the center of the SPECT system in a spiral trajectory
for imaging a selected region of the animal (defined for these
studies as the whole body). Data are collected in list mode.
Reconstruction at a 0.4 mm3 consisted of a pixel-based or-
dered subset expectation maximization algorithm, using the
U-SPECT reconstruction software,17,20 using 8 subsets and 10
iterations, without postreconstruction filters. Here, advanced
resolution recovery based on a measured and interpolated
position dependent point spread function compensates for
distance-dependent sensitivity and blur is applied within user
selected energy windows (below). Attenuation compensation
was not applied. Scatter and background were compensated
for with the triple-energy-window method21 with the main
photopeak set for 75–100 keV with background windows of
70–75 keV and 100–105 keV.

Phantom studies

Line source phantoms each consisted of capillary tubes
(1.0 mm outer diameter, 0.5 mm inner diameter; Sutter In-
strument Company) filled with 223RaCl2 in 0.03 M sodium
citrate and stoppered with capillary tube sealant clay (Globe
Scientific). Activity in each phantom was assessed using a
CRC-127R dose calibrator (Capintec Inc.). Radium-223 was
calibrated according to the guidelines provided by the
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supplier in response to the U.S. Nuclear Regulatory Com-
mission.22 Specifically, the dial setting of the calibrator was
determined to match a decay corrected National Institutes of
Standards and Technology calibrated clinical dose of
223RaCl2 (Xofigo; Bayer Health Care Pharmaceuticals). This
empirically determined dial setting was 277.

The scattering phantom was constructed by casting a 1%
(w/v) agar gel (Invitrogen) in a 10 mL syringe. When set,
this formed a cylinder of 99% water with a diameter of
1.6 cm in which the capillary tube was embedded. The
scattering phantom with the capillary tube was then centered
in the field of view of the small animal SPECT system.
Imaging of the phantom was performed using a single frame
for 30 min. Postacquisition reconstruction was performed
with an energy window of 75–100 keV to capture the 223Ra
c-emissions at 81, 83.8, 94.3, 94.9, and 97.5 keV.

X-ray computed tomography (CT) was performed on a
Sedecal SuperArgus R4 small animal PET/CT (Sedecal
Systems). Reconstructed SPECT/CT fusions were generated
using a three-dimensional (3D) data visualization suite
registration package (Amira version 5.3.3; FEI Inc.).

Animal studies

Radium-223 imaging. The Institutional Animal Care and
Use Committee of the Johns Hopkins University approved all
procedures involving mice. C57Bl/6 mice were purchased from
Charles River, all mice were male with weight between 22 and
27 g (5–7 weeks old). Animals were induced and maintained at
the plane of anesthesia using isoflurane, and 223RaCl2 in citrate
was administered by retro-orbital injection in *100 lL. As
described previously, animal images were acquired with the
small animal U-SPECT system using a highly sensitive multi-
pinhole collimator (the MILab XUHS collimator) on a heated
bed with built-in anesthetic gas flow. The field of view for the
acquisitions was set at 28 · 28 · 70 mm for all subjects. Gen-
erally, we acquired four frames of 22 min each, which were
averaged for reconstruction (using the energy windows de-
scribed in ‘‘Results’’ section). The total scan time including bed
motion and positioning of the animals was *90 min. CT on
the same animals was acquired as above, using the Sedecal
SuperArgus R4.

Bone scan. A representative mouse bone scan was ac-
quired using a 44 mm inner diameter, 1.0 mm diameter
multi-pinhole collimator. The anesthetized mouse was ad-
ministered 37 MBq 99mTc-MDP (Cardinal Health) by retro-
orbital injection. Imaging on the U-SPECT was performed
25 min after injection, using a single frame for 25 min.

Autoradiography. Whole-body and hind-limb specimens
were flash frozen in optimal cutting temperature media
(Sakura Fintec) and submerged in liquid nitrogen. Whole-
body autoradiography was performed using the Bright 8250
Cryostat (Bright Instruments) and sections of limbs were
obtained using a modified cryotome (Leica 1800). En bloc
images of sections (10 lm in thickness) were acquired, as
previously described.14 Sections were exposed on phosphor
screens and imaged using a desktop phosphor imaging
scanner (Cyclone Phosphor Imager; Packard).

Histology. Reagents were purchased from ThermoFisher
Scientific unless otherwise identified. Immunofluorescence
labeling of fresh-frozen sections was performed with cH2AX
rabbit antimouse antibody (Ab-139; Sigma-Aldrich). Fresh-
frozen sections were bathed in room temperature 10% para-
formaldehyde for 10 min, washed with phosphate-buffered
saline (PBS), and then blocked with goat serum for 1 h. The
primary antibody was diluted to 1:250 in PBS and incubated
overnight at 4�C. Alexa488-conjugated goat anti-rabbit sec-
ondary was diluted 1:200 and applied to the PBS washed
slides for 1 h at 4�C. Sections were counterstained with
Hoechst 33342 for 5 min and washed in triplicate with PBS
before mounting in an aqueous glycerol (30% v/v), and letting
set overnight.

Results

Characterizing imaging properties of radium-223

The c ray spectra of radium-223 and daughter radionu-
clides (including radon-219, lead-211, and bismuth-211)
were measured using a high-resolution high-purity germa-
nium (HPGe) detector, as given in Figure 1A. While <2% of
the energy of the emitted energy of 223Ra and daughters is in
the form of photons, it can be seen that there are charac-
teristic emissions present for in vivo imaging. The NaI(Tl)
detectors used in the camera of the small animal U-SPECT
system are of significantly poorer energy resolution than the
cryo-cooled HPGe system. To determine if the U-SPECT
could be used to detect and quantify low (biologically rel-
evant) levels of 223Ra, a glass capillary tube of 22 kBq
(0.59 lCi) of activity was evaluated. A representative, nor-
malized spectra of the rod phantom from one of the three
c-camera heads from a 10-min acquisition is shown (Fig. 1B).
As expected, individual emissions are no longer discernable,
however the prominent 223Ra c-rays are apparent.

Phantom imaging of radium-223 sources

A line source with 23.5 kBq 223Ra was imaged to determine
if sufficient counts could be provided for SPECT reconstruc-
tion. A list-mode acquisition of 480 min was performed using
the 75–100 keV energy window. Different fractions of the list-
mode data with different totals of acquired counts were used in
reconstruction to evaluate the effects of low counting statis-
tics. We found that the small animal SPECT system provided
adequate photon detection sensitivity to provide sufficient de-
tected counts in a reasonable acquisition time (1 h) for image
reconstruction (Fig. 1C).

To evaluate the quantitative accuracy of the SPECT
system, samples were imaged following a system calibration
with a NIST-standardized 223Ra source. Solutions of
223RaCl2 dissolved in 0.03 M citrate buffer in 0.2 mL Ep-
pendorf microcentrifuge tubes were imaged in the scanner.
Volumes of interest of the different activity levels were
manually drawn in the reconstructed datasets and plotted
relative to the known activity (Fig. 1D). Representative
fusion of the SPECT and CT volumes of the tubes are given
in Figure 1E.

Tissue phantom imaging of radium-223

The photon emissions from 223Ra used in SPECT imaging
are in the range of energies that can be scattered heavily
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when passing through a biological medium. To determine
the effect of scattering material on the system line response
function, we imaged a line source in air and embedded in
99% water hydrogel approximating the diameter of a 25 g
mouse (Fig. 2A–C). The count profiles across the 0.5 mm
inner diameter capillary tubes varied only slightly, with
full-width half-max (FWHM) values of 1.21 and 1.31 mm
in air and 1.28 and 1.41 mm in gel in the vertical and
horizontal directions, respectively. This compares favor-
ably with the vendor provided reconstructed FWHM res-
olution of <1.1 mm for this collimator using the 140.5 keV
emitting 99mTc.

In vivo theranostics of radium-223

To investigate the in vivo distribution of 223Ra, we first
imaged mice after blood pool clearance and uptake at sites of
active bone remodeling (Fig. 3). Animals (n = 4) were ad-
ministered between 20.3 and 26 kBq (0.55–0.7 lCi) by retro-
orbital injection and imaged 24 h later, when the activity had
cleared from the soft tissues.14 As can be seen in a repre-
sentative subject, SPECT, CT, and fusion images reveal in-
tense localization to the ends of the sites with the highest
rates of bone formation and remodeling. This was demon-
strated most clearly in the trabecular bone compartment of

FIG. 1. (A) c-spectrum of radium-223 and daughters acquired using a HPGe detector. The most abundant emissions are
the 223Ra emissions in the range of 75–100 keV. (B) The energy resolution of the sodium iodide c-camera is significantly
poorer than the HPGe, but still clearly resolves the 223Ra photo peaks nearing 100 keV. (C) Images of three-dimensional
reconstructed line phantoms of 223Ra (using an energy window of 75–100 keV) with decreasing count reduction parameters.
(D, E) Linear response with 223Ra activity and user-defined volumes of interest, and representative fusion SPECT/CT
image, respectively. CT, computed tomography; HPGe, high-purity germanium; SPECT, single photon emission computed
tomography.
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the distal tibia and proximal femur (Fig. 3A–C). In addition,
signal from 223Ra is apparent in the mandible and premaxilla
and the proximal humerus and distal forelimb. Reconstructed
SPECT volumes overlaid with CT reveal the capacity for
whole-body tomographic imaging of uptake at sites of in-
terest throughout the skeleton (Fig. 3D, E). Furthermore, as
expected, the imaged distribution closely matches that seen
using 99mTc medronic acid, the commonly used radiolabeled
bisphosphonate bone scan tracer (Supplementary Fig. S1).

Ex vivo correlation of radionuclide distribution
and radiobiological effect

To verify the noninvasive SPECT images, we performed
unfixed, undecalcified whole mount whole-body cryo-
sectioning and autoradiography. A color macrograph of the
animal was acquired en bloc before sectioning (14 lm
thickness) and transferred to a storage phosphor sheet for
autoradiography (Fig. 3F–H). Consistent with reconstructed
SPECT volumes, the overlay image clearly recapitulates the
accumulated 223Ra throughout the skeleton, notably at the
manubrium of the ribcage, lower mandible, and hind limbs.

Magnified images of the midsection are shown at the right
knee and left femoral midshaft (Fig. 3I, J).

Closer analysis of the leg was performed to assess cor-
relation of imaging results and radiotherapeutic effect.
SPECT/CT imaging of the lower hind limb shows intense
uptake at proximal tibia and distal femur at 24 h (Fig. 4A–
C). The leg was resected a day after the imaging study and
en bloc imaging, autoradiography, and immunohistochem-
istry were performed (Supplementary Fig. S2). Labeling was
most evident in the rapidly mineralizing bone of the meta-
physis. We subsequently evaluated therapeutic effect by
annotating DNA damage with immunofluorescence mi-
croscopy in treated and control animals (Fig. 4D, E). Sites of
phosphorylated cH2AX were found throughout the trabec-
ular bone compartment of the proximal femur in the treated
animals in comparison with the low background staining in
untreated control samples.

Imaging of transient radiotherapy

Our attempts at kinetic imaging of the low injected ac-
tivities of 223Ra were not successful because of extremely

FIG. 2. Axial, coronal and sagittal slices through the reconstructed rod phantom in (A) air and (B) embedded in a 99%
water hydrogel to simulate scattering from tissue. Volumes were both reconstructed with 8 subsets and 10 iterations using an
iterative pixel-based ordered subset expectation maximization algorithm. (C) CT of the 1 mm external diameter rod source
embedded in the hydrogel. Scale bar for all images is 5 mm. (D) Intensity profile in air (black) and gel (red dashed) of the
horizontal profile across the capillary tube.
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low detected counts. However, static imaging of subjects at
defined intervals after injection can be used to approximate
distribution at arbitrary time points. As an example, 2 min after
administration of a 16 kBq (0.43lCi) dose, the animal was
killed, and imaged (Fig. 5A–E). At this early time point, the
agent was detected in the heart. After SPECT/CT, the animal
was rapidly cryosectioned and processed for autoradiography
(Fig. 5F–H). Pooled activity in the heart and vena cava were
identified, in addition to incomplete labeling of the skull.

Discussion

The increasing interest in the use of a-particle-emitting
radionuclides for cancer cell therapy and ablation is an ex-
citing development in the field of nuclear medicine. A key
element in realizing the potential of this emerging strategy is
to refine dosing parameters for maximized therapeutic effect
with minimized toxicity. Tomographic imaging can play a
significant role in achieving improved pharmacokinetic
modeling and dose optimization of radionuclide tracers and
therapeutic compounds but has largely not been possible for
a-particle-emitting radionuclides.

Several scintigraphic imaging studies have been performed
with a-particle-emitting therapies, including 223Ra8–11 and
antibody-labeled 213Bi.23 These have been important to reveal
pharmacokinetic biodistribution and provide a first estimate of
absorbed dose of these potent therapies in the clinical setting.
The primary advantage of a SPECT is to remove out-of-plane
information, rather than the planar images consisting of
projections of the 3D activity distribution. SPECT provides
improved contrast, resolution, and the capacity for true
quantitation. Here, we evaluated the imaging characteristics
and in vivo imaging capabilities of a dedicated small animal
SPECT system possessing high sensitivity.16 This study
demonstrates that the acquisition of noninvasive, quantitative,
tomographic distribution of radium-223 can be achieved us-
ing dedicated preclinical equipment. Our investigations at
early and late time points show that this approach is feasible
and provides a means to evaluate radionuclide distribution
with reasonable temporal resolution.

Phantom studies demonstrated that using an energy win-
dow of 75–100 keV sub-microcurie activities of 223Ra could
be imaged in three dimensions with near-millimeter spatial
resolution over reasonable data acquisition times. The linear

FIG. 3. Radium-223 SPECT/CT and whole-body autoradiography at 24 h postinjection. (A) CT, (B) SPECT, and
(C) fused coronal slice of a mouse imaged 1 d after intravenous administration of 22 kBq 223RaCl2 citrate. Four 22 min
SPECT acquisitions were acquired and averaged, followed by a CT scan. (D, E) Lateral and dorsal views of three-
dimensional volume rendered SPECT data overlaid onto surface rendered CT data. To generate this image, a weighted
average of the intensities along projections through the SPECT volume was blended with the CT rendered image. Both slice
and three-dimensional rendered volumes reveal intense uptake at the ends of the long bones and premaxilla. To confirm
in vivo SPECT results, whole-body undecalcified cryosections (14 lm) were obtained after imaging. (F) En bloc color
macrograph, (G) autoradiography, and (H) overlay (scale bar, 5 mm). (I, J) Magnified images of the uptake at the
midsection (scale bar, 2 mm). Arrow indicates the right knee; double-headed arrow, the 223Ra uptake along the femoral
shaft.
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FIG. 4. (A) SPECT, (B) CT and
(C) fusion of 223Ra in the lower hind
limb. Uptake is seen at the ends of the
long bones where bone turnover and
ossification are localized. White light
(left) and phosphorylated cH2AX im-
munofluorescence staining (right) of
the femoral head in (D) 223Ra-treated
and (E) control mice. Foci of phos-
phorylated cH2AX staining are identi-
fied throughout the bone forming front
of the treated animals (red arrows).

526

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ite

it 
U

tr
ec

ht
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
25

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://www.liebertpub.com/action/showImage?doi=10.1089/cbr.2019.3308&iName=master.img-003.jpg&w=324&h=664


response with activity in the investigated region can be used
to determine activity concentrations non-invasively. As ex-
pected, 223Ra labels the sites of active bone remodeling
throughout the skeletal compartment. The noninvasive
in vivo imaging performed well to highlight areas of intense
uptake, such as at the mineralizing front of the metaphysis in
the long bones, without the onerous requirements of fresh-
frozen cryosectioning and autoradiography. The cytotoxic
effects of the four a particles produced by 223Ra and
daughter radionuclides require further study to optimize
activity amounts and scheduling in patients. Should ad-
ministered activity levels depend on disease features rather
than patient mass; should dosing frequency be increased or
decreased; are there synergistic or toxic combinations that
change pharmacokinetic properties? We have shown that
imaging correlates with immunofluorescent localization of
DNA damage, which directly measure effect, may inform
upon these questions.

Limitations of this study include the low signal-to-noise
and the limited field of view of the system. The former can
be overcome with higher injected activity, amounts that may
also enable more rapid dynamic imaging. Although such
doses may indeed be tolerated with only mild toxicity,24

they severely deviate from clinical practice. Furthermore,
background readings made from the system indicate the
suboptimal shielding of the c-camera detectors of the
SPECT in our animal facility (containing other photon-
emitting radioactive animals within several meters dis-
tance). With improved facility management, one could
expect improved signal-to-noise. Similarly, optimization
of computational corrections for the spectral and subject
properties (scatter and attenuation) and for reconstruc-
tion parameters may increase quantitative accuracy of the
tomographs.

The second issue, relating to the small field of view, is a
system-dependent parameter. The imageable volume con-
sists of a large number of collimator-magnified projection
images focused within the subject, and whole-body cover-
age is provided by bed motion through the detector. Rede-
signed collimators may enable the functional imaging of
larger subjects, such as mature mice of interest for research
study. 213Bi sub-millimeter SPECT was recently reported
using a similar small animal system and a dedicated high-
energy collimator.15 Additional improvements in dedicated
high-resolution detectors will improve both sensitivity and
resolution.

FIG. 5. Radium-223 SPECT/CT and whole-body autoradiography immediately after administration. In vivo (A) CT,
(B) SPECT, and (C) fused coronal slice of a mouse killed 2 min postinjection of 223RaCl2. (D) Tomographic SPECT/CT
fusions at dorsal-ventral and (E) lateral projections. (F–H) Autoradiogram of cryosectioned whole animal, en bloc mac-
rograph, and fusion.
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Future work will focus on the definition of optimal en-
ergy windows to maximize the recovery coefficient and
sensitivity-versus-resolution tradeoffs of the SPECT system
and implementation of attenuation compensation. Concurrent
developments in collimator design, reconstruction parameters,
and detectors will enhance the scientific utility of these findings.
The present investigations also have import beyond a specific
radionuclide, and suggest that other investigational a-particle-
emitting agents can be quantitatively imaged at low doses.

There are considerable differences between murine and
clinical imaging parameters and considerations for the po-
tential for quantitative imaging in men are significant. The
administered activities per mass used in this work are
greater than those approved for use in patients. However no
deleterious effects were apparent at bodyweight normalized
administered activities four-fold higher than the approved
dose in a planar pharmacokinetic study,9 in which dynamic
imaging of excretion through the gut was monitored. In-
creased scatter and attenuation of signal from patients may
degrade image quality significantly and initial efforts are
underway to simulate and image phantoms and patients.25–27

The use of noninvasive imaging as a means to predict and
monitor therapeutic effect will enhance preclinical evalua-
tion of altered dosing schedules and the role of combination
treatments on 223Ra pharmacokinetics. We anticipate that
these efforts will play a significant role toward improved
patient treatment with 223Ra and other investigational a-
particle emitters.
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