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Abstract
Objective The aim of the present study was to investigate the influence of three grafting materials for cleft repair on ortho-
dontic tooth movement in rats.
Materials and methods Artificial alveolar clefts were created in 21 Wistar rats and were repaired 4 weeks later using auto-
grafts, human xenografts and synthetic bone substitute (beta-tricalcium phosphate/hydroxyapatite [β-TCP/HA]). A further 
4 weeks later, the first molar was moved into the reconstructed maxilla. Microfocus computed tomography (μCT) was per-
formed six times (T0–T5) to assess the tooth movement and root resorption. After 8 weeks, the affected reconstructed jaw 
was resected for histopathological investigation.
Results Total distances reached ranged from 0.82 ± 0.72 mm (β-TCP/HA) to 0.67 ± 0.27 mm (autograft). The resorption 
was particularly determined at the mesiobuccal root. Descriptive tooth movement slowed and root resorption increased 
slightly. However, neither the radiological changes during tooth movement (µCT T1 vs. µCT T5: autograft 1.85 ± 0.39  mm3 
vs. 2.38 ± 0.35  mm3, p = 0.30; human xenograft 1.75 ± 0.45  mm3 vs. 2.17 ± 0.26  mm3, p = 0.54; β-TCP/HA: 1.52 ± 0.42  mm3 
vs. 1.88 ± 0.41  mm3, p = 0.60) nor the histological differences after tooth movement (human xenograft: 0.078 ± 0.05  mm2; 
β-TCP/HA: 0.067 ± 0.049  mm2; autograft: 0.048 ± 0.015  mm2) were statistically significant.
Conclusion The autografts, human xenografts or synthetic bone substitute used for cleft repair seem to have a similar effect 
on the subsequent orthodontic tooth movement and the associated root resorptions.
Clinical relevance Development of root resorptions seems to have a secondary role in choosing a suitable grafting material 
for cleft repair.
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Introduction

For cleft repair, autologous bone grafts from different 
donor sites (e.g. iliac crest, cranium, tibia, rib and man-
dibular symphysis) and commercially available grafting 
materials such as allografts, xenografts and synthetic bone 
substitutes (e.g. bioceramics, polymers or biocomposites) 
can be used [1–3]. However, bony autografts, especially 
the grafts from the iliac crest, are considered the gold 
standard for cleft repair due to their osteogenic, osteoin-
ductive and osteoconductive properties [4, 5]. Neverthe-
less, the grafting process has some operative risks and 
postoperative morbidities, including pain, haematoma and 
delayed ambulation. Furthermore, the region-specific lim-
ited bone supply and the inherent susceptibility to resorp-
tion in the long term must be taken into consideration 
[6–11]. Agents like recombinant human bone morpho-
genetic protein and demineralized bone matrix can also 
be used, but there may be potential for local or immune 
reactions, graft failure, infection and need for additional 
surgery [5]. Therefore, further investigations have been 
carried out to improve alternative bone substitute materi-
als such as xenografts, ceramics, polymers or biocom-
posites in terms of having better clinical outcomes and 
reduced postoperative morbidity [3, 4, 12].

Occasionally, bone substitutes are also relevant in 
orthodontics. For example, these may be considered if 
orthodontic tooth movement across a narrow alveolar 
ridge area is necessary. Otherwise, this would inevitably 
entail some adverse reactions such as limited movement 
or periodontal tissue damage. In this context, in a current 
review by Lu et al., it was mentioned that the vast major-
ity of studies have confirmed that teeth can be moved 
through bone defects augmented with bone grafts, despite 
slight occasional root resorptions [13]. The authors rec-
ommended that orthodontic tooth movement into such 
constructed alveolar ridge should be not initiated before 
4 weeks after implantation.

Towards the aforementioned end, many different 
experimental cleft models in rats have been developed 
[14–22]. However, most of these models do not corre-
spond to the clinical situation in terms of anatomical 
defect, which is clinically characterised by an epithe-
lial-lining covering. Therefore, the cleft surface must be 
covered with healthy mucosa when cleft repair is to be 
performed. To do this, an artificial alveolar cleft must be 
generated in a two-stage surgery, whereby the mucosal 
lining of the cleft will be achieved after the healing 
period [23]. Also different from clinical practice are the 
previously introduced cleft regions: the mid-palate cleft 

in the anterior part of the maxilla [14–16] and the alveo-
lar cleft in the central [15, 17, 18] or posterior [19–22] 
maxilla. With regard to their position and anatomy, only 
the posterior alveolar cleft allows subsequent tooth move-
ment into the alveolar-cleft bone graft area. However, 
this bone deficit is usually based on the extraction of the 
first molar, which makes the defect more a large extrac-
tion defect than a complete interruption of the maxillary 
continuity in an alveolar cleft.

Actually, the influence of bone substitutes and their 
long-term outcomes in cleft models in combination with 
subsequent orthodontic tooth movement remain unclear. 
Sun et  al. found that orthodontic movement into the 
reconstructed area can facilitate bone reconstruction 
through stimulation, which enhances the bone remodel-
ling and provides a bone matrix for shifting teeth [20]. 
Ru et al. compared a bovine xenograft with a synthetic 
substitute mixture of beta-tricalcium phosphate (β-TCP) 
and hydroxyapatite (HA) in a related rat alveolar-defect 
model and reported the least amount of tooth movement 
and the lowest root resorption and crater volumes in the 
synthetic-bone-substitute group [21]. They supposed 
that bovine xenografts have less osteoconductive poten-
tial than the synthetic substitutes. In this context, Norten 
et al. reported that bovine bone substitutes in humans 
degrade slowly and could be responsible for uncertain 
immune responses and fibrous encapsulation with heal-
ing [24]. Allogeneic grafting materials are already in 
use for cleft repair and promise good results, such as 
decreased operation time, reduced hospital stay and less 
graft resorption over time [25–27].

No information has been given, however, about the 
influence of human grafting material as bone substi-
tute on the subsequent orthodontic tooth movement in 
bony repaired clefts. As such, this study was conducted 
to determine root resorptions resulting from the use of 
three different underlying grafting materials (autografts, 
human xenografts and synthetic bone substitutes [β-TCP/
HA]) and to compare these with each other. The study 
hypothesis was that human xenografts and β-TCP/HA 
bone substitute led to more root resorptions than autolo-
gous bone, which is currently the gold standard.

Materials and methods

The a priori sample size calculation was based on the 
data previously published by Ru et al. for mean apical 
root resorption in rats treated with xenogeneic/bovine 
and synthetic β-TCP/HA bone [21]. The calculation was 
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achieved using one-way analysis of variance (ANOVA) 
with regard to the root resorptions. The sample size esti-
mation relied on the large observed effect (0.0605 vs. 
0.089) and the related difference between xenogeneic 
and autologous bone graft, which was expected to be 
half the difference between the xenogeneic graft and the 
synthetic bone substitute. The common standard devia-
tion was considered 0.01, which corresponds to 10% of 
the highest value for mean root resorption reported by Ru 
et al. [21]. The level of significance was set to 0.0125 to 
reproduce the measured root resorptions, and an associ-
ated effect size of 1.3538 was considered to reach 80% 
or more power in a one-way ANOVA model with three 
groups. The study design involved the use of seven rats 
per group (based on the type of cleft repair material 
used), including two animals for dropout, and a 16-week 
investigation period (Fig. 1).

Detailed information about the experimental setup was 
previously published [28–30]. All animal experiments were 
approved by the Governmental Animal Care and Use Com-
mittee (Reference No.: 81–02.04.2018.A342; Landesamt 
für Natur, Umwelt und Verbraucherschutz Recklinghausen, 
Nordrhein-Westfalen, Germany; dated: 11.01.2019) and 
were performed in accordance with the German animal 
welfare law (Tierschutzgesetz, TSchG) and European 
Union Directive 2010/63/EU. The study design also con-
formed with the Animal Research: Reporting of In Vivo 
Experiments (ARRIVE) Guidelines [31] and the Guide for 
the Care and Use of Laboratory Animals.

The animals (N = 21) were divided into three groups 
on the basis of the kind of grafting material to be used 
for alveolar-cleft repair: autologous bone from the ischial 
tuberosity of the hip, xenogeneic/human bone substitute 
(Maxgraft, Botiss Biomaterials, Krems, Austria) and 
synthetic β-TCP/HA bone substitute (Maxresorb, Botiss 
Biomaterials, Krems, Austria).

The artificial alveolar clefts were generated in the 
maxillary left side in 8-week-old male Wistar rats 
with an average weight of 465 ± 34 g. The cleft repair 
was performed 4  weeks later in a second surgery in 
the then 12-week-old animals with an average weight 
of 504 ± 36 g. After a consolidation phase of a further 
4 weeks, the orthodontic appliance was inserted in the 
16-week-old animals (average weight: 542 ± 32 g).

After 8 weeks of orthodontic tooth protraction, the 
rats were sacrificed under general anaesthesia through 
cervical dislocation, and the affected part of the maxilla 
was resected, including the corresponding tooth.

Cleft creation and repair

The cleft preparation and cleft repair were done under 
general anaesthesia through the intraperitoneal (IP) 
injection of ketamine (80–100 mg/kg, Ketavet, Pfizer, 
Berlin, Germany) and medetomidine hydrochloride 
(0.15–0.25  mg/kg, Domitor, Orion Pharma, Espoo, 
Finland). Oxygen administration was guaranteed by 

Fig. 1  Timeline of the research 
protocol. The thick, solid lines 
represent the main experimental 
interventions under intraperi-
toneal injection: cleft creation, 
cleft repair, application of 
orthodontic appliances, sacrifice 
and resection. The dotted lines 
represent the radiological meas-
ures in microfocus computed 
tomography for monitoring 
under isoflurane anaesthesia
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endotracheal intubation, and anaesthetisation was 
achieved through the subcutaneous administration of 
buprenorphine (0.03–0.05 mg/kg, Temgesic, Indivior 
Limited, Berkshire, UK). Adjuvant antibiotic treatment 
was given using cefuroxime (15 mg/kg s.c., Fresenius, 
Bad Homburg, Germany) for 7 days. Afterwards, ati-
pamezole hydrochloride (0.75 mg/kg, Antisedan, Orion 
Pharma, Espoo, Finland) was administered via IP to sup-
port the recovery process, and if applicable, buprenor-
phine (0.03–0.05 mg/kg) was given subcutaneously for 
a maximum of 5  days. After these interventions, the 
laboratory animals were replaced in their cages and 
were intensively monitored and observed until their full 
recovery.

The artificial cleft was created using an ultrasonic 
surgery device (Ø 1.7 mm, insert OT5, Mectron s.p.a., 
Carasco, Italy) for an osteotomy between the roots of the 
incisor and the first molar under irrigation with saline 
solution. Afterwards, bone wax (Bonewax, Ethicon, 
Johnson & Johnson Medical GmbH, Norderstedt, Ger-
many) was used to preserve the artificial cleft. Finally, 
the wound was closed with a continuous resorbable 
suture (7/0 Vicryl, Ethicon, Johnson & Johnson Medi-
cal, Somerville, NJ, USA) [28].

For cleft repair, the soft tissue was deflected as in 
the previous operation. In the group with cleft repair 
using autografts, the bone was harvested before the cleft 
repair from the left hip’s ischial tuberosity [29]. Before 
the autologous bone or the other grafting materials 

(xenogeneic/human or synthetic substitute) were used, 
the cleft was prepared by removing the applied bone wax 
and refreshing the surrounding bone. Subsequently, max-
illary reconstruction was achieved by applying the three 
different grafting materials (Fig. 2), and the autografts 
and human xenografts were sufficiently fixed via press-
fit technique while the synthetic bone substitute material 
(β-TCP/HA) was carefully applied under condensation. 
Ensuing wound closure was done with continuous resorb-
able sutures (7/0 Vicryl, Ethicon, Johnson & Johnson 
Medical, Somerville, NJ, USA).

Orthodontic tooth movement

After performing the anaesthesia and anaesthetic pro-
tocol as described for cleft creation and repair, a 
nickel–titanium closed-coil tension spring (33–54,495, 
PSM Medical Solutions GmbH, Gunningen, Germany) 
was applied between the incisors and the first upper-left 
molar, as in the study by Kirschneck et al. [32–34], to 
achieve a continuous force application of about 0.14 N 
[28]. The spring was fixed with wire ligatures (Ø 0.01″) 
and dental composite (Venus Flow, Kulzer GmbH, 
Hanau, Germany) via acid etching (Fig. 3).

Microfocus computed tomography analysis

Radiological examination for determining tooth move-
ment and root changes was carried out 2 days before 

Fig. 2  View of the operative situs of the left maxilla in the supine 
position: first molar above, mouth tip below: re-entry and cleft repair 
performed with a autologous bone from the ischial tuberosity of the 

hip, b xenogeneic/human bone substitute or c β-TCP/HA bone substi-
tute material
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(T0) and 8 days after (T1) placement of the orthodontic 
appliance using an in vivo microfocus computed tomog-
raphy (µCT) system (U-CT OI, MILabs, Utrecht, the 
Netherlands) under a standardised setting with regard 
to general isoflurane anaesthesia and the radiological 
analysis protocol [28]. Additional radiological examina-
tions were performed on days 15, 29, 43 and 57 (T2-T5).

The tooth movement distance was measured in the 
sagittal projections of µCT as in the study by Ru et al. 
Visible landmarks (i.e. the tips of the left first and second 
molars) were chosen to quantify the tooth movement. The 
distance was measured three times at each time point, 
and the measurements were averaged to obtain reliable 
results [22].

To analyse the changes in the roots with regard to 
possible signs of resorption, the first molars were seg-
mented in μCT images using all the anatomical planes 
(Fig. 4). All the roots were delineated separately, and 
their volumes at each time point were computed. The root 
resorption was calculated for each root by subtracting the 

root volume at each time point for every animal from the 
root volume at T0.

Histomorphometric analysis

The preparation of the histomorphometric samples fol-
lowed an established procedure [30]. The samples were 
stored in 4% formalin, decalcified in ethylenediami-
netetraacetic (EDTA) and shock frozen in liquid nitro-
gen. Afterwards, they were embedded and cut into 5- to 
7-μm-thick longitudinal sections through the tooth and 
the surrounding hard and soft tissue. The samples were 
then fixed in acetone for 10 min and stained with tolui-
dine blue according to the routine protocols. Evaluation 
was carried out using a light microscope with software 
support (Olympus digital microscope DSX-1000, Olym-
pus Hamburg, Germany) (Fig. 5a–c).

A total of 19 slices, six in the autologous-bone and 
xenogeneic/human-bone group and seven in the syn-
thetic-bone-substitute group, were conducted and evalu-
ated by one investigator. The mesial root of the tooth 
was defined as general region of interest. The evaluation 
was carried out using a light microscopy with software 
support (Olympus digital microscope DSX-1000, Olym-
pus Hamburg, Germany) (Fig. 5a–c). The samples were 
investigated under qualitative aspects regarding signs of 
inflammatory reactions, necroses and ankylosis as well 
as the number of multinucleated giant cells. Furthermore, 
the dimensions of resorption lacunae  (mm2) were deter-
mined as the area between the intact parts of the root 
surfaces (Fig. 5d–f). If several lacunae occurred, their 
individual areas were added to the total resorption.

Results

Neither wound healing disorders nor acute inflammatory 
processes were observed after both surgical interventions.

However, even though wound healing was good after 
the surgical procedures, two animals died after the second 
operation due to inhalation problems or circulatory failure 
[28]. As such, there were now only six animals each in the 
autologous-bone and xenogeneic/human-bone groups and 
seven in the synthetic-bone-substitute group. In all, 11 bro-
ken orthodontic appliances were found during the radiologi-
cal follow-up imaging period, and among these, one appara-
tus came loose twice.

Tooth movement

After an initial period of 7 days (µCT T1), the mean 
tooth movement of the first molar was 0.21 ± 0.08 mm 
in the autologous-bone group, 0.50 ± 0.54  mm in the 

Fig. 3  Rat in supine position: orthodontic appliance installed 4 weeks 
after cleft repair using a 0.14-N nickel–titanium closed-coil tension 
spring between the first molar and the incisors fixed with tension 
springs after conditioning of the teeth through acid etching using 39% 
phosphonic acid and a bonding agent and dental composite
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xenogeneic/human-bone group and 0.29 ± 0.12 mm in the 
synthetic-bone-substitute group (Fig. 6a). After 8 weeks 
(µCT T8), a distance of 0.82 ± 0.72 mm was measured in 
the synthetic-bone-substitute group, 0.78 ± 0.69 mm in 
the xenogeneic/human-bone group and 0.67 ± 0.27 mm 
in the autologous-bone group. The corresponding mean 
tooth movement rate range during the orthodontic move-
ment was from 0.003 ± 0.006 (T5) to 0.03 ± 0.011 mm/day 
(T1) in the autologous-bone group, from − 0.002 ± 0.036 
(T2) to 0.071 ± 0.077 mm/day (T1) in the xenogeneic/
human-bone group and from − 0.027 ± 0.027 (T2) of 
0.41 ± 0.017 mm/day (T1) in the synthetic-bone-substitute 
group (Fig. 6b). With regard to the amount of tooth move-
ment, no statistically significant difference was found 
among the groups (autologous-bone group: p = 0.52; 
xenogeneic/human-bone group: p = 0.87; synthetic-bone-
substitute group: p = 0.29) on all the measurement days 
(e.g. T1: p ≥ 0.58; T5: p ≥ 0.85) and between the measure-
ment times (T1 vs. T5) within each group.

Thus, varying degrees of tooth movement took place over 
the entire period, characterised by a high initial tooth move-
ment (1st week) followed by a relapse (2nd week, especially 
in the synthetic-bone-substitute group) and a subsequent 
slower forced tooth movement (3rd to 8th weeks).

Microfocus computed tomography imaging

Radiological detectable resorptions occurred to vary-
ing extents on all the roots. The occurrence of resorption 
increased with higher proximity to the filled cleft defect. 
Consequently, the largest resorption phenomenon occurred 
at the mesiobuccal root, and the smallest, at the distobuccal 
root. During orthodontic tooth movement, no significant dif-
ference in root resorption was observed between the begin-
ning (µCT T1) and the end (µCT T5) of tooth protraction 
(Fig. 7).

Although resorption progression occurred in all the three 
groups for the mesiobuccal root during the orthodontic tooth 
movement (µCT T1 vs. µCT T5: autologous-bone group 
1.85 ± 0.39  mm3 vs. 2.38 ± 0.35  mm3, p = 0.30; xenogeneic/
human-bone group 1.75 ± 0.45  mm3 vs. 2.17 ± 0.26  mm3, 
p = 0.54; synthetic-bone-substitute group 1.52 ± 0.42  mm3 
vs. 1.88 ± 0.41  mm3, p = 0.60) and between the autologous-
bone and synthetic-bone-substitute groups at the beginning 
and end of this intervention (autologous-bone group vs. 
synthetic-bone-substitute group: µCT T1 1.85 ± 0.39  mm3 
vs. 1.52 ± 0.42  mm3, p = 0.41; µCT T5: 2.38 ± 0.35  mm3 vs. 
1.88 ± 0.41  mm3, p = 0.14), these differences were not sta-
tistically significant.

Fig. 4  Radiologically determined root resorption of the first molar 
M1 (*). Locations of the teeth in the upper jawbone a before (in blue) 
and b after (in green) the orthodontic treatment. Comparison of the 

extracted teeth c before (in blue) and d after (in green) the orthodon-
tic treatment with marked (white arrows) visible signs of root resorp-
tion
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With regard to the other roots, no progressive changes 
in root resorption were observed regardless of the graft-
ing material used, except in the mesiolingual root, which 
appeared to be minor (µCT T1 vs. µCT T5: autologous-bone 
group 1.09 ± 0.19  mm3 vs. 1.29 ± 0.15  mm3, p = 0.76; xeno-
geneic/human-bone group 1.09 ± 0.38  mm3 vs. 1.31 ± 0.37 
 mm3, p = 0.63; synthetic-bone-substitute group 1.02 ± 0.07 
 mm3 vs. 1.34 ± 0.24  mm3, p = 0.23).

As for the influence of the grafting material, the most 
affected mesiobuccal root showed the greatest damage at all 
the time points in the autologous-bone group, followed by 
the xenogeneic/human-bone and synthetic-bone-substitute 
groups (Table 1). Thus, the root resorptions in the autolo-
gous-bone group ranged from 1.85 ± 0.39  mm3 (µCT T1) to 
2.14 ± 0.86  mm3 (µCT T5); those in the xenogeneic/human-
bone group, from 1.72 ± 0.45  mm3 (µCT T1) to 2.17 ± 0.26 
 mm3 (µCT T5); and those in the synthetic-bone-substitute 
group, from 1.52 ± 0.42  mm3 (µCT T1) to 1.90 ± 0.52  mm3 
(µCT T4).

Histomorphology analysis

In general, no signs of inflammatory reactions, increased 
number of multinucleated giant cells, necrosis and ankylosis 
were found. Only one xenogeneic/human-bone sample dem-
onstrated an inflammatory reaction of the apical root, while 
in the autologous-bone and the synthetic-bone-substitute 
group one sample each suggested an ankylosis of the mesial 
root (Fig. 5f).

In the histological longitudinal section, resorption lacu-
nae of varying degrees were found for both the mesial and 
distal roots (Fig. 8), whereby mainly the mesial root close 
to the repaired cleft was affected. The highest extent of 
resorption was found in the xenogeneic/human-bone group 
(0.078 ± 0.056  mm2), followed by the synthetic-bone-sub-
stitute group (0.067 ± 0.049  mm2) and the autologous-bone 
group (0.048 ± 0.015  mm2). However, these differences were 
not statistically significant.

Furthermore, differences in the amount of resorption were 
found between the mesial and distal roots, but these were 

Fig. 5  Histological longitudinal section (toluidine blue stains) 
through the tooth and surrounding hard- and soft-tissue Sect. 84 days 
after cleft repair using a, d autologous bone, b, e xenogeneic/human 
bone and c, f synthetic bone substitute (beta-tricalcium phosphate/

hydroxyapatite): overview: a–c, 100 × magnification; detailed view: 
d–f up to 350 × magnification; root resorption (arrows), persistent 
bone/substitute (*) and signs of ankylosis (#)
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statistically significant only in the xenogeneic/human-bone 
group (mesial: 0.078 ± 0.056  mm2 vs. distal: 0.018 ± 0.015 
 mm2; p = 0.01).

Discussion

Alveolar clefts are unique with regard to the special oral 
and nasal mucosa lining in the defect region. However, 
the animal models previously used in rodents were not 
in accordance with these differing cleft morphologies 
[14–22]. Additionally, subsequent and equivalent ortho-
dontic tooth movement in the cleft repair region of these 
models is not possible because the defect is too far away 
from the molar or the alveolar cleft is not completely 
interrupting the continuity of the bone. Therefore, to pre-
vent this methodical deficit, the present study design was 
established, which makes use of grafting materials similar 
to human alveolar clefts and enables sufficient cleft repair 
with autografts from the ischial tuberosity of the hip as 
well as subsequent orthodontic tooth movement [28, 29].

Autologous bone especially from the iliac crest 
remains the gold standard [28] for packing the bony 
alveolar defect [6–8]. It has some weaknesses, however, 
including limited bone supply, demand for an additional 
donor site, related postoperative morbidity (pain, haema-
toma and delayed ambulation) and inherent susceptibility 

to resorption in the long term [6–10]. For this reason, 
different tissue-engineered bone substitutes have been 
investigated, which should improve bone fusion and 
eliminate donor site morbidity [8, 35–37].

Calcium phosphate ceramics are among the candidate 
bone substitute grafting materials contained in various 
types of alloplastic biomaterials, such as calcium sul-
phate, TCP or β-TCP [37, 38]. To ensure the ideal resorp-
tion of the material, the preferred ratio of HA and β-TCP 
ranges from 65:35 to 55:45 [39, 40]. In this context, it 
was reported that the healing process of β-TCP seems 
similar to that of the autogenous bone graft from the 
iliac crest at least in a goat model [41]. Additionally, de 
Ruiter et al. found increased bone formation in the β-TCP 
group compared to the autograft group (22.90 ± 5.62% 
vs. 20.87 ± 5.40%), but the increase was not statistically 
significant [41].

Human allografts are alternatives to synthetic bone sub-
stitutes and are already being used clinically in cleft repair. 
In particular, the use of allogeneic bone grafts customised 
through computer-aided design/computer-aided manufactur-
ing is gaining in popularity and seems to enable complete 
osseous integration and fusion of the grafts in the recipient 
site [26, 27]. However, it must be mentioned that animal 
studies are of limited value in this context because human 
bone allografts in animals must be assessed as xenogeneic 

Fig. 6  Quantification of tooth 
movement depending on the 
grafting materials used for cleft 
repair in microfocus computed 
tomography over a period of 
57 days or 8 weeks, respec-
tively: a distance of tooth move-
ment and b tooth movement per 
week

Fig. 7  Radiologically measured 
progression of all the first-molar 
root resorptions over the 8-week 
tooth movement period depend-
ing on the used bone substitutes 
for jaw reconstruction
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transplants that may lead to immunological reactions of the 
collagen structures [42].

A sufficient analysis of bone and root changes with 
regard to graft healing and root resorption can be done in 
animal research using μCT [43–45]. Due to the isotropic 
voxel sizes and standardised voxel units, the volumetric 

μCT data are appropriate for quantitative analysis using 
high-resolution 3D imaging in in vivo and ex vivo labora-
tory settings [43, 45–49].

Ru et al. have investigated real-time root resorption in 
graft sites in rats during orthodontic tooth movement after 
alveolar-defect packing with different bone substitutes, using 

Table 1  Radiologically 
determined root resorption on 
all the five roots depending on 
the grafting material used over 
the 8-week treatment period

µCT Grafting material Radiological root resorption  (mm3)

Mesiobuc-
cal

Mesiolin-
gual

Buccal Distolingual Distobuccal

Mean SD Mean SD Mean SD Mean SD Mean SD

T1 (day 8) Autograft 1.85 0.39 1.09 0.19 0.88 0.22 0.81 0.11 0.27 0.05
Human xenograft 1.75 0.45 1.09 0.38 0.76 0.31 0.66 0.2 0.21 0.05
β-TCP/HA substitute 1.52 0.42 1.02 0.07 0.82 0.16 0.85 0.2 0.23 0.09

T2 (day 15) Autograft 2.08 0.59 1.2 0.35 0.89 0.21 0.84 0.12 0.26 0.07
Human xenograft 1.72 0.68 1.17 0.4 0.75 0.22 0.71 0.16 0.24 0.1
β-TCP/HA substitute 1.68 0.19 1.12 0.14 0.81 0.01 0.7 0.04 0.17 0.09

T3 (day 29) Autograft 2.14 0.86 1.2 0.38 0.88 0.33 0.79 0.21 0.21 0.08
Human xenograft 1.86 0.42 1.24 0.24 0.78 0.28 0.73 0.19 0.23 0.07
β-TCP/HA substitute 1.73 0.33 1.14 0.12 0.81 0.08 0.77 0.13 0.2 0.09

T4 (day 43) Autograft 2.09 0.29 1.23 0.32 0.84 0.26 0.87 0.3 0.22 0.09
Human xenograft 1.83 0.38 1.3 0.36 0.75 0.34 0.7 0.22 0.19 0.1
β-TCP/HA substitute 1.9 0.52 1.23 0.18 0.75 0.25 0.72 0.16 0.23 0.13

T5 (day 57) Autograft 2.38 0.35 1.29 0.15 0.83 0.17 0.74 0.19 0.18 0.04
Human xenograft 2.17 0.26 1.31 0.37 0.63 0.24 0.66 0.19 0.21 0.07
β-TCP/HA substitute 1.88 0.41 1.34 0.24 0.67 0.16 0.8 0.18 0.15 0.1

Fig. 8  Histological analysis 
of the tooth samples for root 
resorption after the completion 
of the orthodontic movement 
phase (day 57): bar chart of the 
mean values and the corre-
sponding p values for com-
parisons between the different 
groups
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μCT [21, 22, 45]. The defect repair was performed option-
ally with natural bovine cancellous bone particles or a syn-
thetic bone substitute based on a mixture of 60% HA and 
40% β-TCP, while in the control group no graft was used 
after maxillary-first-molar extraction [21]. The least amount 
of tooth movement and the lowest root resorption and cra-
ter volumes were detected in the synthetic-bone-substitute 
group. In general, the highest root resorptions were found in 
the apical region of the mesiobuccal roots in all the groups 
[22]. Finally, the authors concluded that the β-TCP/HA sub-
stitute has better osteoconductive potential and induces less 
root resorption compared to bovine grafting and the natu-
rally recovered defect sites.

Similar results for the β-TCP/HA bone substitute were 
found in the present study, but the findings of this study can-
not be directly compared with those of Ru et al. as the defect 
models that were used and the kind of μCT analysis that was 
conducted in the two studies were different [21]. Ru et al. 
investigated different areas of the roots with regard to the 
incidence of signs of resorption [22] whereas, in the present 
investigation, the overall resorption for each root was ana-
lysed. In general, the radiological examination in the present 
study also revealed that resorptions occurred in all the roots 
in the course of tooth movement. In concordance to the find-
ings of Ru et al., in the present study the largest resorptions 
were found on the mesiobuccal root close to the repaired 
cleft. Apart from the fact that the foregoing might have been 
because this root is the largest, it seems that this root car-
ries an increased risk for undesirable alterations because it 
was the only root that showed a progression of resorption 
during the tooth movement. However, the increase here was 
not statistically significant. In contrast, in the present study, 
no progression was observed on the four other roots. In fact, 
the observed resorptions differed at first glance between the 
individual groups (autologous-bone group > xenogeneic/
human-bone group > synthetic-bone-substitute group). 
However, the differences were not statistically significant, 
and the changes could not have been only caused by the 
grafting materials as the roots had no contact to these in the 
beginning. Nevertheless, as the changes on the mesial root 
increased compared to the other roots during the orthodontic 
movement, the bone substitutes must have had proportional 
effects. The histological analysis in the present study dem-
onstrated the most severe root damage in the xenogeneic/
human-bone group, followed by the autologous-bone and 
synthetic-bone-substitute groups, but the differences among 
the groups were also not statistically significant.

In this context, Seifi and Ghoraishian reported that when 
they used human bone as a xenograft for cleft repair in 
canines, the tooth movement showed both decreased root 
resorption for the teeth in the allogeneic bone and a signifi-
cant increase in tooth movement velocity compared with the 
untreated control site [50].

In contrast, Ru et al. reported intermittent tooth move-
ment velocity in all the groups in their study (β-TCP/HA 
substitute, bovine xenograft or unpacked). The velocity was 
significantly higher in the 1st and 3rd weeks than in the 
2nd and 4th weeks, respectively [22]. They observed the 
greatest tooth movement in the control group, which was 
approximately 0.35 mm after 14 days, followed by the xeno-
geneic/bovine-bone group (0.3 mm) and the β-TCP group 
(0.25 mm) [21]. The corresponding distances after 28 days 
were approximately 0.98  mm, 0.86  mm and 0.83  mm, 
respectively [22]. In this context, Kirschneck et al. reported 
0.8 ± 0.2  mm tooth movement in an uncompromised 
jaw 14 days after the mesial tipping, with a mesial-root 
torque of 0.4 ± 0.3 mm, 0.9 ± 0.2 mm tooth movement and 
0.4 ± 0.3 mm mesial-root torque after 28 days [34].

The mean distance of orthodontic tooth movement in the 
present study after 14 days ranged from 0.26 ± 0.26 mm in 
the autologous-bone group to 0.50 ± 0.70 mm in the xeno-
geneic/human-bone group, and that after 28 days ranged 
from 0.32 ± 0.15 mm in the synthetic-bone-substitute group 
to 0.61 ± 1.04 mm in the xenogeneic/human-bone group. 
After the 8th week of tooth movement, the largest distance 
was about 0.82 ± 0.72 mm in the synthetic-bone-substitute 
group, followed by 0.78 ± 0.69  mm in the xenogeneic/
human-bone group and 0.67 ± 0.27 mm in the autologous-
bone group. Thus, the initial tooth movement velocity in the 
present study appears to be comparable to that in the study 
by Ru et al., but the total movement time was significantly 
slower. Furthermore, the tooth movement was also slower 
than that in the study by Kirschneck et al. [34]. Therefore, it 
seems that further tooth movement is inhibited by the graft-
ing material used.

In summary, the differences in root resorption and tooth 
movement between the bone graft substitutes, as well as 
autologous bone as gold standard, were not statistically sig-
nificant at any time. An interpretation of the differences is 
more of speculative nature. The materials used in this study 
for cleft repair seem to have a similar effect on orthodontic 
tooth movement and the development of root resorptions. It 
is important to verify these findings in further basic research.

Conclusion

With regard to the limitations of the animal study design, it 
appears that regardless of the grafting material used, tooth 
movement slowed down and the root resorption increased 
in the present study. This occurs mainly at the mesial root, 
which was the closest to the repaired cleft. Neither radiologi-
cally nor histologically statistically significant differences 
were found between root resorptions regardless of the bone 
substitute used for jaw reconstruction. Furthermore, the 
same distance of tooth movement was detected during the 
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research period. Therefore, the development of root resorp-
tions should have a secondary role in choosing a suitable 
grafting material for cleft repair.
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