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Abstract 
 
 Myocardial blood flow and myocardial blood flow reserve (MBFR) measurements are often used 

clinically to quantify coronary microvascular function. Developing imaging-based methods to measure 

MBFR for research in mice would be advantageous for evaluating new treatment methods for coronary 

microvascular disease, yet this is more challenging in mice than in humans. This work investigates 

microSPECT’s quantitative capabilities of cardiac imaging by utilizing a multi-part cardiac phantom and 

applying a known kinetic model to synthesize kinetic data from static data, allowing for assessment of 

kinetic modeling accuracy. The phantom was designed with four main components: two left-ventricular 

(LV) myocardial sections and two LV blood-pool sections, sized for end-systole and end-diastole. Each 

section of the phantom was imaged separately while acquiring list-mode data. These static, separate-

compartment data were manipulated into synthetic dynamic data using a kinetic model representing 

the myocardium and blood-pool activity concentrations over time and then combined into a set of 

dynamic image frames and reconstructed. Regions of interest were drawn on the resulting images, and 

kinetic parameters were estimated. This process was performed for three tracer uptake values (K1), 

three myocardial wall thicknesses, 10 filter parameters, and 20 iterations for 25 noise ensembles. The 

degree of filtering and iteration number were optimized to minimize the root mean-squared error 

(RMSE) of K1 values, with the largest number of iterations and minimal filtering yielding the lowest error. 

Using the optimized parameters, K1 was determined with reasonable error (~3% RMSE) over all wall 

thicknesses and K1 input values. This work demonstrates that accurate and precise measurements of K1 

are possible for the U-SPECT+ system used in this study, for several different uptake rates and LV 

dimensions. Additionally, it allows for future investigation utilizing other imaging systems, including PET 

studies with any radiotracer, as well as with additional phantom parts containing lesions.  

 
1. Introduction 
 
Coronary microvascular disease (CMVD), or disease of the coronary pre-arterioles and arterioles, has 
become an increasingly well-recognized cardiac pathology (Camici  and Crea 2007) which contributes 
significantly to cardiac morbidity and mortality (Bairey Merz et al., 2017; Gibson et al., 2000). The 
coronary microvasculature regulates myocardial blood flow (MBF) in response to metabolic demand and 
is critical in maintaining proper myocardial perfusion. MBF increases in response to cardiac stressors, 
such as exercise or pharmacologic vasodilators. In the absence of flow-limiting epicardial coronary artery 
lesions, the ability to increase MBF is a direct measure of coronary microvascular function (Ahmed, 
2014). This is typically quantified using the metric of myocardial blood flow reserve (MBFR), which is 
defined as the ratio of MBF at stress to MBF at rest. Studies have shown that diminished MBFR is 
correlated with poor cardiovascular outcomes in various populations (Majmudar et al., 2015; Murthy et 
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al., 2014), and that determining MBF and MBFR improve the diagnostic and prognostic value over 
myocardial perfusion imaging alone (Farhad et al., 2013; Herzog et al., 2009). 
 
Developing methods based on imaging to measure MBF and MBFR for research in small animals such as 
mice would be advantageous for evaluating new treatment methods for CMVD. However, such 
measurements are currently challenging using mice due to their small size, even when utilizing 
dedicated small-animal systems. Currently, mouse studies of CMVD have been limited to structural 
studies or ex-vivo studies (Duncker and Bache, 2008; Moslehi et al., 2010; Chintalgattu et al., 2013). 
Although PET is more commonly used clinically, in small animal imaging microSPECT typically has 
superior spatial resolution to microPET due to the use of pinholes (Beekman and van der Have, 2007) 
and has less expensive tracers, making it better suited than PET for this particular application.  
 
We are working to develop a non-invasive imaging technique to allow in-vivo and longitudinal evaluation 
of MBFR in mouse models of CMVD (Guerraty et al., 2017). We have previously developed a protocol to 
image mice dynamically under rest and stress conditions on a microSPECT system in order to measure 
MBFR changes in wild type mice using customized kinetic modeling software (Johnson et al., 2016); 
however, we currently lack a method to evaluate the quantitative accuracy of these studies, with regard 
to imaging and modeling errors. An example of this work is shown in Fig. 1, which shows slices of 
reconstructed images and a corresponding time activity curve of both the myocardium and the blood 
pool. The tracer uptake rate constant, K1, which is necessary but not sufficient for determining MBF, 
should ideally be compared to some other "gold-standard" technique for evaluating quantitative 
accuracy. Although it is possible to estimate MBF in mice via invasive methods, such as using fluorescent 
microspheres, (Gervais et al., 1999), additional factors are required to determine K1 from MBF.  
Also, these MBF determination methods are terminal methods do not allow for longitudinal studies and 
are challenging to perform on the small scale of mice.  
 

 

   
 
Fig. 1: An example of a previously acquired dynamic mouse acquisition. Top: the resulting time activity 
curve when data were reconstructed in 10-second frames. Bottom: image slices from a 60-second 
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acquisition starting at 320 seconds into the scan. These results show the approximate shape and 
distribution of activity concentration in the myocardium and blood pool over time, and is highly 
dependent on the amount of activity injected and the unknown K1 of the subject.  
 
In this work, we focus on evaluating the accuracy of rate constants determined from dynamic cardiac 
microSPECT by acquiring image data from a multi-compartment cardiac phantom to compute synthetic 
dynamic cardiac SPECT image frames, as well as corrections for resolution blurring and spillover 
(crosstalk) between the phantom's "myocardium" and its left ventricular "blood pool". This phantom 
study allows for a known K1 to be compared to imaging results that include effects attributable to 
system noise, resolution, and kinetic modeling. Note that the determination of absolute MBF will 
ultimately also require correction for the tracer-specific extraction fraction (EXF) from arterial blood to 
myocardial tissue which, itself, varies nonlinearly with blood flow for all but freely diffusible tracers (e.g., 
H2

15O). While the EXF and its flow dependence have been evaluated for several tracers in humans, they 
have not yet been well characterized for SPECT tracers in mice; this will be the subject of future 
research. 
 

2. Methods 
 
2.1. Phantom Description 
We have designed and printed a three-dimensional (3D) multi-compartment cardiac phantom (printed 
by Solid Technologies, Inc. on an MJP ProJet 2500 system using VisiJet M2R-CL Rigid Clear material). The 
phantom has two sections each of left-ventricular myocardium and left-ventricular blood pool, with one 
section of each sized appropriately to represent end-diastole (ED), and the other for end-systole (ES), 
where myocardial volume is preserved between the two states. This configuration can be seen in Fig. 2.  
The ED blood pool was modeled as frustoconical with a cap that was a portion of an ellipsoid. The 
frustocone had length 5.8 mm and diameters of 2.5 mm and 2.3 mm at the basal and apical ends, 
respectively. The ellipsoidal cap replacing the tip of the truncated cone had diameters of 2.3 mm 
perpendicular to the cone’s axis and 1.0 mm diameter along the cone’s axis, giving a total length of 6.3 
mm; the frustocone and ellipsoid had matching diameters and slopes at their intersection. Similarly, the 
ES blood pool was modeled as the same basic shape, but the frustocone had length 5.0 mm and 
diameters of 2.0 mm and 1.8 mm at the basal and apical ends, respectively. The ellipsoidal cap had 
diameter of 1.0 mm along the cone’s axis, giving a total length of 5.5 mm. For each blood pool, the 
myocardial shape was determined with three wall thickness. For ED the wall thicknesses were selected 
to be of 0.75, 1.0, and 1.25 mm. For ES the wall thicknesses were determined by matching the 
myocardial volume of the corresponding ED peice, giving wall thickness values of 0.94, 1.22, and 1.51 
mm, respectively. 
 
These phantom dimensions were chosen to represent the size of the myocardium of a typical adult 
mouse. Fig. 2B shows three different sizes of ES myocardial parts, which are used in position 4 in Fig. 2A. 
The different sections were designed to fit into a pre-existing phantom tube and allow for filling of the 
entire phantom with a uniform concentration of activity. To assemble the phantom, the base 
myocardium, which has two narrow, solid rods extending the full length of the entire assembled 
phantom, is placed into the empty phantom tube and the myocardial cavity filled using a syringe. All 
subsequent pieces slide onto the two rods via the designed through-holes (seen in Fig. 2B), such that the 
pieces are properly aligned (Fig. 2C). Each piece is filled after being placed inside the tube, and after all 
pieces are in place, the phantom is fully filled to remove any air bubbles, and then closed. The phantom 
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is filled with a single syringe of activity, ensuring that all parts of the phantom have the same activity 
concentration. 
 

 
Fig. 2.  The phantom design (A) contains ED myocardium (1), hot rod (2), ED blood pool (3), ES 
myocardium (4) and ES blood pool (5) sections. Gaps are shown between pieces for clarity. The 
hot rod section contains 6 equal-diameter, equally spaced rods and is not used in this work but 
was designed to demonstrate image resolution. Photographs (B-E) show the 3D printed 
phantom parts and tube for filling.  

 
2.2. Data Acquisition 
The phantom was filled and imaged three times, once for each set of LV dimensions. The fill solutions 
had 99mTc activity concentrations of 9.5, 6.6, and 4.5 mCi/mL, respectively, for the 0.75, 1.0, and 1.25 
mm ED wall thickness values. The 0.75 ED phantom was imaged for a total of 5 hours, 1 hour per 
individual section, while the 1.0 and 1.25 ED phantoms were imaged for a total of 10 hours, 2 hours per 
individual section. All acquisition data were collected in list-mode on an MiLabs U-SPECT+ system, 
having a spatial resolution of approximately 0.45 mm (van der Have et al., 2009). 
 

All three acquisitions had between 5∙108 and 8∙108 photopeak counts. Each section of the phantom was 
imaged in a single bed position. The known configuration and dimensions of the phantom allowed us to 
translate the system bed in such a way that each subsequent compartment would be correctly 
positioned within the SPECT field of view (FOV) so that the projections properly aligned. This approach 
also permits synthesizing data according to any defined time-activity curve, allowing us to merge 
projection data from corresponding myocardial and blood-pool compartments after the temporal 
scaling operation. The combination of high activity and long acquisition time provided a sufficient 
number of events to divide a single long list-mode data set into multiple synthesized dynamic data 
frames. 
 
2.3. Kinetic Modeling 
The rate of uptake of the tracer from the blood pool into the myocardial tissue, referred to as K1, can be 
used to determine myocardial blood flow (MBF). In this work, we utilized a 1-tissue compartment 
model, as shown in Fig. 3, where the tracer concentration in the blood pool, Ca(t), is related to the tracer 
concentration in the myocardium, Ct(t), by the rates K1 and k2. In this work, k2 is assumed to be zero over 
the course of imaging because we are primarily interested in imaging tracers that are rapidly 
sequestered inside myocardial cells with little or no washout or recirculation, e.g., 99mTc-Sestamibi. 
Equation (1) represents this model mathematically, and was used in our software to estimate K1 (Klein et 
al., 2010). 

A 

1 

2 
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5 
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Fig. 3: Diagram of a one-tissue compartment model, showing the rates of tracer (K1 and k2) 
movement between the arterail blood pool and myocardial tissue.  

 
d𝐶𝑡(𝑡)

d𝑡
=  𝐾1𝐶𝑎(𝑡) − 𝑘2𝐶𝑡(𝑡)  =  𝐾1𝐶𝑎(𝑡) (for tracers with k2=0) Eqn 1 

 
Additionally, our kinetic modeling software allows for mixing between the blood pool and myocardial 
concentration estimates obtained from image regions of interest (ROI). The ROI drawn over the 
myocardium is composed of activity from the myocardium in addition to spillover from ventricles and 
blood pool due to resolution limitations and, in the case of animal imaging, myocardial wall motion. The 
blood pool ROI contains the activity inside the left ventricular blood pool and spillover from the 
myocardium, and also in the case of animal imaging would include spillover due to wall motion. The 
software accounts for this using a generalization of a mixing matrix (Klein et al., 2010), as shown in Eqn. 
(2): 

  Eqn 2 
where CMyo(t) and CBP(t) are functions over time of mean activity concentration from ROIs drawn over 
the myocardium and blood pool, respectively, CT(t) and CA(t) are the true concentrations in the 
myocardial tissue and arterial blood over time, respectively, RT and RA are the constants representing 
the observed fraction of myocardial-tissue concentration seen within the myocardial ROI and the 
fraction of arterial-blood concentration seen in the left ventricular ROI. FA and FT are the constant 
fraction of spillover from the arterial blood into the myocardium, and from the myocardial tissue into 
the left ventricle blood pool, respectively. In a mouse, FA can arise from both resolution and motion 
effects, as well as from blood perfusion within the heart muscle. The fitting algorithm, when provided 
with the inputs CMyo(t), CBP(t), RT and RA, uniquely estimates the resulting values of FA, FT, CT(t), CA(t), and 
K1.   

 
Typically, following determination of K1, MBF is subsequently calculated numerically using the Renkin-
Crone model as shown in Eqn. (3): 

𝐾1 =  𝑀𝐵𝐹 ∗  𝐸𝑋𝐹 = 𝑀𝐵𝐹 ∗ (1 − 𝑒−𝛼𝑒−𝛽 𝑀𝐵𝐹⁄ ) Eqn 3 

where EXF is the extraction fraction, a tracer-specific quantity that accounts for nonlinear tracer 
extraction as a function of MBF and the effective capillary permeability times surface area product (Klein 
et al., 2010). These parameters are condensed into α and β, for which values can be found in literature, 
such as α=0.14 and β=0.44 ml/min/g for 99mTc-sestamibi. These values were determined in an isolated 
isovolumetric contracting rabbit heart (Leppo and Meerdink, 1989) and we are unaware of 
measurements of mouse-specific values. Although these literature values for rabbits could be applied to 
mice studies, to avoid further inconsistencies being incorporated into results, this work will focus on the 
accuracy of determining K1 instead of MBF.  
 
2.4. Dynamic-Data Generation 
Following raw-data acquisition, the static data from each single phantom compartment were combined 
and manipulated into synthetic dynamic data by randomly accepting events in proportions obtained 
from an assumed kinetic model, mimicking actual dynamic mouse acquisitions. A probability function 

Blood 
Pool C

a
(t) 

K
1
 

k
2
 

Myocardium 

C
t
(t) 

(
𝐶𝑀𝑦𝑜(𝑡)

𝐶𝐵𝑃(𝑡)
) = (

𝑅𝑇 𝐹𝐴

𝐹𝑇 𝑅𝐴
) (

𝐶𝑇(𝑡)
𝐶𝐴(𝑡)

) 
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was used to accept or reject events from the original list-mode file to create each time frame of the 
dynamic time activity curve. A constant scale factor, λ, was used to control the fraction of events from 
the list-mode file in order to provide a count rate similar to that of animal studies. The blood pool and 
myocardial compartments have unique probability functions that mimic a typical animal acquisition. For 
each event in the corresponding myocardium or blood pool compartment data files, a uniformly 
distributed random number, U[0,1), was obtained from a standard computer random-number 
generator. If that number was less than the calculated probability constant at a particular time point, 
the event was used. The blood pool probability was determined using Eqn. 4, based on an assumed 
Gaussian shape for the input function, similar to what we have seen experimentally (Fig. 1): 

𝑃𝐶𝐴
(𝑡) = 𝜆𝑒

−
(𝑡−𝑡0)2

2𝜎2  Eqn 4 

where 𝑃𝐶𝐴
(𝑡) is the probability "input function" of the arterial blood pool, t0 is the peak time of the 

activity injection, 𝜆 is a scale factor to control the count level, and σ is the width (standard deviation) of 
the injection pulse.  𝜆 was chosen to give an appropriate number of counts and to ensure that the 
calculated probability was never greater than 1 at any time. A separate 𝜆 was determined for each 
phantom acquisition, but it was the same for both the myocardial and blood pool probability functions.  
Its value was determined by ensuring that an approximately equal number of events occurred for each 
phantom acquisition and were matched to an example mouse acquisition. Both t0 (injection peak time) 
and σ (width of injection bolus) are constant for all protocols in this study.  
 
For the myocardium probability, we impose the constraint of the 1-tissue compartment model from 
Eqn. 1, as seen in Eqn. 5: 

𝑃𝐶𝑇
(𝑡) = 𝐾1 ∫ 𝑑𝑡′𝑡

0
𝑃𝐶𝐴

(𝑡) = 𝐾1𝜆 ∫ 𝑑𝑡′𝑡

0
𝑒

−
(𝑡′−𝑡0)

2

2𝜎2 =  𝐾1𝜆𝜎√
𝜋

2
[erf (

𝑡−𝑡0

√2𝜎
) − erf (

−𝑡0

√2𝜎
)] Eqn 5 

where 𝑃𝐶𝑇
(𝑡) is the probability function of the myocardium and K1 is the uptake rate of 99mTc-sestamibi 

from the blood into the myocardium (min-1). 
 
To mimic unpublished rest/stress animal data, the phantom data were processed into 5-min acquisitions 
with 10-second dynamic frames, with the center of injected activity occurring at 60 seconds into the 
scan – the actual injection would occur a few seconds prior to the peak in a mouse. For each phantom, 
the input K1 value was set to be 0.5 min-1, 1.5 min-1, or 2.5 min-1 to represent rest and stress. These 
values were chosen as they fall within the expected range of values for mice (Croteau et al., 2015). Both 
myocardial and blood pool probability functions are shown in Fig. 4. Both the simulated myocardial and 
blood pool probability functions are similar in shape to previously collected animal data, an example of 
which is shown in Fig. 1. The differences between the probability functions and the animal data are due 
to the limited dynamic sampling of the SPECT data in combination with spill-over between the blood 
pool and myocardium animal ROIs which is a result of both system resolution and cardiac motion. 
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Fig. 4. Examples of the arterial and tissue probability functions for a five-minute acquisition with 
the injected activity peak occurring at 60 seconds, showing the three different K1 values (0.5 
min-1, 1.5 min-1, or 2.5 min-1) used in this work to represent a range of rest and stress in mice. 

 
2.4.1. Dynamic End Diastole and End Systole Image Ensemble Generation 
To simulate the dynamic data, the equations above were averaged over the 10 seconds of each dynamic 
frame in 1-second steps, with 𝜆 chosen such that the myocardial concentration was approximately that 
obtained from mice rest/stress data (Guerraty et al., 2017). The appropriate probability function was 
used for each part of the phantom, applying a half-life correction based on each part’s acquisition start 
time. The resulting dynamic blood-pool and myocardial list-mode data were combined into a single 
dynamic data set and reconstructed using the USPECT+ system’s reconstruction software. This gives, 
from a single phantom, three dynamic data sets: (1) the combined blood pool and myocardium for ES; 
(2) the combined blood pool and myocardium for ED; and (3) the mixed model of EDES which represents 
the data that might be obtained from a moving (beating) heart (described below). This process is 
illustrated in Fig. 5. This probability model was then re-applied 25 times for each phantom data set and 
K1 input combination to create multiple noise ensemble image sets. Each individual noise ensemble set 
was created with the same probability function parameters (t0, σ, λ, and K1). Each phantom data set has 
a very small 𝜆, all less than 0.01, which allows for statistically independent noise realizations.  

Fig. 5. Flow chart depicting the process of turning the original phantom’s list-mode data into 
dynamic images.  

 
2.4.2. Motion Estimation Ensemble Generation 
To simulate basic cardiac motion, we used a combination of the raw data from both the ED and ES 
sections. In humans, it is typical for the myocardium to spend from 1/3 to 3/8 of the cardiac cycle in 
systole and the remaing time in diastole (Zipes et al., 2014) . However, mice have a higher heart rate 
than humans and therefore spend less time in diastole. To compensate for this, we chose to pull events 
from the ED and ES compenents of the raw list-mode data in a ratio of 60% ED and 40% ES based on 
observations from unpublished mouse echo data. These data follow the same processing as shown in 
Fig. 5, except the ‘Input Myo’ and ‘Input BP’ boxes are the mixed ratio list-mode data. 
 
2.5. Dynamic Data Processing 
The static acquisitions of each phantom compartment were also individually reconstructed. This 
reconstruction was then used to define 3D ROIs for each phantom part (ED myocardium, ES 
myocardium, ED blood pool, ES blood pool). The ROIs were defined by including all voxels that have an 
intensity of 50% or higher of the maximum image intensity of the reconstructed images. Unique ROIs 
were defined for combination of iteration number and post-reconstruction filter value. ROIs were then 
applied to the ES and ED reconstructed images for each dynamic data set, including each phantom, each 
K1 input value, and each ensemble noise realization. At each dynamic time point, the mean ROI value 
was determined and used to create time-activity curves. The time-activity curves were then used in our 
customized kinetic modeling software to estimate K1 from the reconstructed images. For the motion-
blurred EDES data the same method was used, except that the static, part-weighted data (60% ED, 40% 
ES) were reconstructed and used as the basis for the ROIs for the combined EDES ensembles. 
 

Input Myo Dynamic Myo 

Input BP Dynamic BP 

Combined 
Dynamic List 
Mode Data 

𝑃𝐶𝑇
(t) 

𝑃𝐶𝐴
(t) 

Dynamic 
Images 

Reconstruction 
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2.5.1. Determining RT and RA fit inputs 
To determine the required fitting constants RT and RA, we first calculated the true activity-concentration 
values in the myocardial tissue, CT(t), and in the arterial blood pool CA(t). First, utilizing the known 
activity concentration of the phantom, A, an effective activity concentration, Aeff, was calculated, 
correcting for the differences in the reconstructed phantom’s frame duration, tframe, and that of the 
phantom compartment in question, tacq, as seen in Eqn. 6 and 7, where τ is the half-life of 99mTc: 
 

𝐴𝑒𝑓𝑓 ∫ 2
−𝑡

𝜏⁄  𝑑𝑡
𝑡𝑓𝑟𝑎𝑚𝑒

0
= 𝐴 ∫ 2

−𝑡
𝜏⁄  𝑑𝑡

𝑡𝑎𝑐𝑞

0
  Eqn 6 

𝐴𝑒𝑓𝑓 = 𝐴 
1− 2

−𝑡𝑎𝑐𝑞
𝜏

1− 2

−𝑡𝑓𝑟𝑎𝑚𝑒
𝜏

  Eqn 7 

The effective activity concentration was then used to determine the true concentration of activity in the 
myocardium and blood pool using the probability functions defined in Eqn. 4 and 5, averaged over the 

10-second frames where 𝑃𝐶𝐴
(𝑡)̅̅ ̅̅ ̅̅ ̅̅  and  𝑃𝐶𝑇

(𝑡)̅̅ ̅̅ ̅̅ ̅̅  are the average probability for the time frame containing t, 

as shown in Eqn. 8 and 9:  

𝐶𝐴(𝑡) =  𝑃𝐶𝐴
(𝑡)̅̅ ̅̅ ̅̅ ̅̅  𝐴𝑒𝑓𝑓 Eqn 8 

𝐶𝑇(𝑡) =  𝑃𝐶𝑇
(𝑡)̅̅ ̅̅ ̅̅ ̅̅  𝐴𝑒𝑓𝑓 Eqn 9

  
To determine RT and RA estimates, we used equations from the mixing matrix in Eqn. 2 and performed a 
least-squares minimization over all time frames as seen in Eqn. 10 and 11:  

𝑆1 =  ∑ [𝐶𝐵𝑃(𝑡) − 𝐹𝑇𝐶𝑇(𝑡) − 𝑅𝐴𝐶𝐴(𝑡)]2
𝐴𝑙𝑙 𝐹𝑟𝑎𝑚𝑒𝑠  Eqn 10 

𝑆2 =  ∑ [𝐶𝑀𝑌𝑂(𝑡) − 𝑅𝑇𝐶𝑇(𝑡) − 𝐹𝐴𝐶𝐴(𝑡)]2
𝐴𝑙𝑙 𝐹𝑟𝑎𝑚𝑒𝑠  Eqn 11 

where CMyo and CBP are parameters obtained based on RA, RT, FA, and FT. 

 
Taking the derivative of Eqn. 10 with respect to RA and FT and Eqn. 11 with respect to RT and FA gives 
Eqn. 12 and 13, (FT and FA not shown): 
 

𝑅𝐴 =  
∑ 𝐶𝑇𝐶𝐴 ∑ 𝐶𝑇𝐶𝐵𝑃− ∑ 𝐶𝑇

2 ∑ 𝐶𝐵𝑃𝐶𝐴

(∑ 𝐶𝑇𝐶𝐴)2− ∑ 𝐶𝐴
2 ∑ 𝐶𝑇

2  Eqn 12 

𝑅𝑇 =  
∑ 𝐶𝑇𝐶𝐴 ∑ 𝐶𝐴𝐶𝑀𝑌𝑂− ∑ 𝐶𝐴

2 ∑ 𝐶𝑀𝑌𝑂𝐶𝑇

(∑ 𝐶𝑇𝐶𝐴)2− ∑ 𝐶𝐴
2 ∑ 𝐶𝑇

2  Eqn 13 

 
2.6. Reconstruction and Fit Evaluation 
Determining the optimal number of iterations and smoothing 
As with most iterative reconstruction algorithms, determining a balance between reconstruction 
iteration number and smoothing can be difficult. In this work the optimization of the number of 
iterations and amount smoothing parameters with respect to K1 accuracy allows for an estimate of error 
of K1 and to also determine if, and how much, different K1 values both the optimized reconstruction 
parameters and the resulting K1 error. For this work, we reconstructed each noise ensemble and K1 
combination of phantom acquisition to determine an optimal iteration and smoothing combination. 
Each data set was reconstructed with 11 different smoothing parameters, using a Gaussian filter of 0, 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 mm standard deviation, and for each of 20 iterations, 
always using 4 subsets. A separate ROI for each iteration and smoothing combination was determined 
by using 50% of the maximum of the individually-reconstructed static phantom segments for a matched 
number of iterations and smoothing parameter value. RA and RT were determined as described above for 
each noise instance, smoothing and iteration combination. For each smoothing and iteration 
combination, the mean of RA and RT over all noise realizations was determined and used as an input into 
the fitting software in conjunction with the ROI-determined time activity curves. The MSE error of K1 
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value returned by the fit compared to the input ground truth was then used as a metric to determine 
the optimal levels of smoothing and number of iterations. 
 
2.6.1 Sensitivity of K1 to RT and RA 

As RT and RA are required as an input into our fitting software, understanding the error associated with 
their estimate is critical for understanding their effects on the fitting accuracy of K1 and subsequently 
MBF. In this phantom study, we accurately estimate both RT and RA, which includes effects due to 
resolution and partial-volume spillover. In mice, this evaluation is more challenging, as it not only 
includes effects of resolution and spillover, but also the effect of cardiac motion. To estimate the effect 
of inaccurate RT and RA on K1 accuracy, we can compare the kinetic modeling fits of the perfect RT and RA 

values calculated from equations 12 and 13 for each noise realization from that of results when the 
mean RT and RA of the 25 noise realizations is used. 
 

3. Results 
 
This work first establishes that a single phantom acquisition can be turned into synthetic dynamic data 
which can be subsequently used as input into kinetic modeling software for determination of K1. Next, it 
investigates the effect of the input RT and RA values on K1 accuracy taking into consideration the 
different phantom types (ED, ES, and EDES-combination), iteration number and smoothing amount. 
Finally, we evaluate the accuracy of K1 in a variety of cases in order to gain insight into the amount of 
error from system noise and the kinetic modeling software. This allows for understanding of the 
limitations of kinetic modeling when moving to in-vivo mice studies.  
 
3.1. Dynamic Data Example 
A short, full-phantom acquisition was imaged and reconstructed to allow for visualization of the entire 
phantom and is shown in Fig. 6. Each phantom compartment is clearly visualized, along with activity that 
can be seen along the edges and near the lid of the phantom tube. 

 
Fig. 6: Coronal slice of the entire cardiac phantom with an ED wall thickness of 1.25 mm (10 
iterations, 0.25 FWHM post-filter), showing, from bottom to top, the ED myocardium, ED blood 
pool, ES myocardium, and the ES blood pool. 

 
The results from a single noise realization of the dynamic data-processing scheme are shown in Fig. 7 for 
the 1.25 mm ED phantom size, K1 of 0.5 min-1, reconstructed with no filtering for 20 iterations with 4 
subsets. 
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Fig. 7: Central slice of reconstructed dynamic data over time, visualizing the wash-in and wash-
out of the myocardial and blood-pool compartments. 

 
For the same data set as in Fig. 7, the previously determined ROIs for the blood pool and myocardium 
were applied and used to determine the required input into the kinetic modeling software. The program 
was then run using the average of the RA and RT values determined from equations 12 and 13, for the 
noise ensemble, 0.841 and 0.839 respectively, for the particular iteration number and filter value. The 
resulting arterial and tissue components were then determined by the kinetic modeling software, with 
the resulting time-activity curves shown in Fig. 8. 

 
 

Fig. 8: Example time-activity curves showing input into the kinetic modeling software including 
the blood pool ROI (BP ROI), myocardial ROI (Myo ROI), their fitted input curves (BP Data Fitted 
and Myo Data Fitted), and the resulting separated curves (dotted lines) that were used to 
determine K1. 

 
3.2. Variation of RT and RA 
 
For each reconstruction setting, including the iteration number, filter parameter, phantom type (ED, ES 
and motion-estimating EDES combination), wall thickness (0.75, 1.00, and 1.25 mm), K1 (0.5, 1.5, and 2.5 
min-1), and noise realization, RT and RA were determined from equations 12 and 13. Fig. 9 shows an 
example of a histogram of the noise ensemble of the determined RT and RA values for the ED phantom 
with a wall thickness of 0.75 mm, K1 of 0.5, and no filtering, at two different iteration numbers. Visual 
inspection shows that the RT and RA values obtained from the different noise realizations were grouped 
quite tightly for each number of iterations, and that increasing iterations changed the values of the 
recovery coefficients. The results of other phantom and reconstruction combinations were similar (not 
shown). 
 

T = 5 sec 

T = 65 sec T = 75 sec T = 85 sec T = 295 sec 

T = 45 sec T = 55 sec 
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(a)  (b)  
 

Fig. 9: Histograms of noise ensembles of determined RT (a) and RA (b) values for the ED phantom 
with a wall thickness of 0.75 mm, K1 of 0.5 min-1, and no filtering. 

 
In addition to looking at the individual RT and RA values, it is useful to determine if there are differences 
at the noise-ensemble level. These data allow for better understanding of how differences in RT and RA 
values may affect quantification in animal studies if inaccurate RT and RA values are utilized. Therefore, 
Fig. 10 and Fig. 11 show both the mean and percent standard deviation of RT and RA values, respectively 
for a variety of different phantom and reconstruction combinations. All results are in the expected range 
of zero to one, where one would imply a perfect reconstruction with complete recovery of all activity 
falling within the ROI. The mean RT and RA values mostly stabilize after five iterations, and comparing 
across different extremes of filtering, wall thickness and part type do not affect the general trends of the 
mean values. 
 

 (a)  (b)  

 (c)   (d)  
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Fig. 10: The mean (a) and percent standard deviation (b) of the noise-ensemble RT values for the 
ED phantom with a wall thickness of 0.75 mm over iteration and varying Gaussian filtering. To 
compare across phantom types, (c) shows the mean RT across the three different phantom types 
(ED, ES and EDES motion-estimation) at two different filter levels for the 0.75 mm wall thickness 
and K1 of 0.5 min-1. Similarly, (d) compares the mean RT across varying wall thickness at two 
different filter levels for the ED part type and K1 of 0.5 min-1.   

 

 (a)  (b)  

 (c)  (d)  
 

Fig. 11: The mean (a) and percent standard deviation (b) of the noise-ensemble RA values for the 
ED phantom with a wall thickness of 0.75 mm over iteration and varying Gaussian filtering. To 
compare across phantom types, (c) shows the mean RA across the three different phantom types 
(ED, ES and EDES motion-estimation) at two different filter levels for the 0.75 mm wall thickness 
and K1 of 0.5 min-1. Similarly, (d) compares the mean RA across varying wall thickness at two 
different filter levels for the ED part type and K1 of 0.5 min-1. 

 
Similar to plots shown in Fig. 10 and 11, Fig. 12 and Fig. 13 show trends of RT and RA, respectively, across 
different phantom sizes. Fig. 12 shows that RT is lower for the 1.25 mm wall thickness phantom 
compared to the 1 mm phantom while Fig. 13 shows that RA for 1.25 mm wall thickness phantom is 
similar or slightly higher compared to the 1 mm phantom.  
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 (a)  (b)  

 (c)  (d)  
 

Fig. 12: The mean of the noise-ensemble RT values for the ED phantom with a wall thickness of 
(a) 1 mm and (b) 1.25 mm over iteration and varying Gaussian filtering. To compare across 
phantom types, (c) and (d) show the mean RT across the three different phantom types (ED, ES 
and EDES motion-estimation) for the 1.0 and 1.25 mm wall thickness, respectively, at two 
different filter levels and K1 of 0.5 min-1. 

 (a)  (b)  
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 (c)  (d)  
 
Fig. 13: The mean of the noise-ensemble RA values for the ED phantom with a wall thickness of 
(a) 1 mm and (b) 1.25 mm over iteration and varying Gaussian filtering. To compare across 
phantom types, (c) and (d) show the mean RA across the three different phantom types (ED, ES 
and EDES motion-estimation) for the 1.0 and 1.25 mm wall thickness, respectively, at two 
different filter levels and K1 of 0.5 min-1. 
 

 
3.3. Evaluation of K1 Accuracy 
 
To estimate error in the accuracy of K1 estimation, the mean value of RT and RA determined for each 
noise ensemble (instead of each determined RT and RA values from equations 12 and 13) were used as 
inputs into the kinetic modeling software in conjunction with the original time activity curve inputs. This 
allows for an estimation of how accurate K1 error is when population-average values of RT and RA are 
used, as is likely to occur when imaging animal subjects. Additionally, this allows for insight into an 
appropriate number of iterations and amount of smoothing for the noise-level of images produced in 
this study. Fig. 14 shows the percent root-mean-square error (% RMSE) for a phantom noise ensemble 
of the ED phantom with a wall thickness of 0.75 mm and a K1 of 0.5 min-1 by both filter amount and 
iteration. Increasing the number of iterations decreases the % RMSE, while less filtering also decreases 
the % RMSE. This trend is similar across all phantom types, wall thicknesses, and K1 values (data not 
shown). This implies that for the most accurate quantification, more iterations and limited filtering is 
desired. To better visualize the range of error, for the 20th iteration and no filtering, Fig. 15 shows the K1 
% RMSE for each phantom type across each of the three K1 values for each of the different wall 
thicknesses. The values range from less than 1% to 3.5%. The highest error is associated with the 
smallest wall thickness, which could be due to image resolution. 

 

(a)  (b)  
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Fig. 14: The percent RMSE of K1 when run with the mean RT and RA as input into the kinetic 
modeling software for the ED phantom with a wall thickness of 0.75 mm and a K1 of 0.5 min-1. 
The results are shown by both amount of filtering (a) and iteration (b). 

 

 (a)  (b)   

(c)  
Fig. 15: The K1 percent RMS is shown for each phantom part combination (ED, ES, and EDES 
motion-approximation) at wall thicknesses 0.75, 1.00, and 1.25 for (a), (b) and (c), respectively. 

 

4. Discussion and Conclusion 
 
This work demonstrates that for the modeled cardiac phantom, reasonable error (~3% RMSE) in 
estimation of tracer uptake rate is possible for the U-SPECT+ system used in this study over several 
uptake rates and LV dimensions. This error includes effects of system noise and resolution on 
reconstructed images. The main benefit of using this method to assess the tracer uptake rate is that 
there is a known ground truth that can be used to evaluate accuracy.  
 
Figure 9 shows that the values for the recovery coefficients, RT and RA, have a small variance, but the 
mean varies as a function of iteration for the ED phantom. Figure 10 reinforces that and shows that the 
values for these fitting parameters converge within about 20 iterations. The converged values, 
unsurprisingly, depend on the amount of post filtering. Similar results are seen in Figure 11 for the ES 
phantom. 
 
Figures 12 and 13 show trends of RT and RA, respectively, across different phantom sizes. Fig. 12 shows 
that there is some variation in RT across different wall thicknesses, but no clear trends are present. Fig 
13 shows that there is little difference across wall thickness sizes for RA, implying that the location and 
size of the LV ROI makes the results mostly independent of wall thickness 
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Figure 14 shows the Root-Mean-Squared (RMS) Error for K1. The uncertainty in K1 increases with more 
post filtering. The uncertainty decreases with number of iterations. This latter observation is consistent 
with the results of Figures 9-11, indicating the stability of the mixing parameters at higher iteration. The 
former observation, especially in combination with the observation on number of iterations, suggests 
that sharper images give more quantitatively accurate measurements for this application. Further, 
although one cannot conclude that the quantification is optimized at 20 iterations, it is clear from Fig. 14 
that the RMSE at 20 iterations is likely very close to the asymptotic limit for reasonable computational 
time for the reconstructions. 
 
Figure 15 shows that the minimized RMS error for K1 is about 2-3% for the range of K1 values and 
configurations studied. It is difficult to discern consistent trends, suggesting that the noise on the data 
points is masking those trends. 
 
The current phantom was designed to mimic cardiac imaging of wild-type mice of different sizes. A more 
disease-relevant model, which is achievable via 3D printing, would incorporate a myocardial lesion. 
Determination of the effect of a lesion on the estimation of K1 would allow for additional understanding 
of the sensitivity of SPECT’s ability to detect lesions, or changes in lesions, in small animals. This would 
be especially useful when evaluating treatment studies of disease models.  
 
Although this work focuses on the dynamics of a particular tracer (99mTc – Sestamibi) and using the U-
SPECT+ system, one advantage to this phantom and the processing methodology is that it can easily be 
applied to other imaging tracers, including PET tracers and systems. Future work could allow for 
comparison of quantification accuracy between these different tracers and systems to assess which is 
likely to give the most accurate and precise results. Additionally, our current kinetic modeling assumes 
that k2 is zero, which – though a valid assumption for Sestamibi – is not true for all tracers. The manner 
in which data are modeled in this work easily allows for the myocardial and blood pool probability 
curves to be changed to accommodate more complicated kinetic models, such as those with more 
compartments. All that is required is to change Eqns. 4 and 5 which are used to generate the list-mode 
image data. 
 
Other changes to the input probability curves (Eqns. 4 and 5) in future work could allow for more 
accurate modeling of biological processes and its effects in downstream accuracy. For example, in 
unpublished work, we have previously evaluated RT in mice by excising the myocardium directly after 
imaging and RA in a separate group of mice by labeling of red blood cells. In the process of this work, we 
have estimated the fraction of blood that is present in the myocardial tissue. This blood fraction could 
be incorporated into to the input probability curve to better mimic real conditions of potential error. 
 
Although this work currently focuses on a single small-animal SPECT system, the use of a phantom to 
estimate the quantitative capabilities of dynamic imaging has great potential to evaluate sources of 
error not only in the field of small-animal cardiac applications, but also in other applications for which 
different phantoms could be designed. It is highly likely that the optimal reconstruction parameters of 
other SPECT or PET systems would follow the same trends of seeking image sharpness for quantification. 
Further, this phantom could be used to determine the values of mixing parameters as a function of 
heart size and adjust those parameters per mouse for more accurate results. In summary, the phantom 
is very useful for developing quantification related to kinetic modeling of flow tracers in a mouse heart. 
 
This work has several limitations. First, the shape of the blood-pool curve is an estimate of a typical 
injection curve. This limits the application of these results to cases with similar injection curves and 
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would not extend to cases where a poor or unusual injection may substantially change the shape of the 
input function. These types of injections are likely to be excluded from most robust studies. 
 
Another limitation of this work is that the spillover fractions are dependent on the ROI used for analysis. 
There are a variety of different ways one can draw a ROI on images, but determining them based on 
50% of the maximum is a repeatable method that allows for consistency across all of the different 
reconstructions in this phantom study. Using a different method would likely change the resulting 
mixing parameters, but the focus of this work is on how the range of these values effects the accuracy of 
K1 determination. It is not expected that changing the ROI method would vastly change the accuracy of 
K1. Additionally, this method of ROI determination would not be applied to images with heterogenous 
uptake in the myocardium, as it would fail to include regions of low uptake. Alternative methods of ROI 
determination would need to be used to properly address this, and would likely involve hand-drawn or 
semi-automated methods similar to those currently used in animal and human imaging. 
 
Additionally, the current method used to estimate motion does not fully capture the true motion during 
a heartbeat. The weighted-average of the two different positions provides at least some idea of the 
what the influence of motion would be, but further conclusions about motion would require methods 
that better estimate the stages between ED and ES, in addition to the final ED and ES positions. 
 
In conclusion, we have designed and utilized a cardiac phantom to evaluate the robustness of our 
dynamic SPECT imaging capabilities. We have determined the necessary input parameters RT and RA for 
our kinetic modeling software and evaluated the effect of uncertainty in these values on the kinetic-fit 
results for K1. This shows that these methods are likely to be useful in mice even when using estimated 
values of RT and RA. We determined that reconstruction using a relatively high number of iterations with 
minimal post-filtering led to the lowest errors on the estimates of K1. Finally, there is a wide variety of 
additional studies and applications for which this phantom could be utilized. 
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