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Abstract

Myocardial blood flow and myocardial blood flow reserve (MBFR) measdrements are often used
clinically to quantify coronary microvascular function. Developing imaging-based methods to measure
MBFR for research in mice would be advantageous for evaluating new'treatment methods for coronary
microvascular disease, yet this is more challenging in mice than in humans. This work investigates
microSPECT’s quantitative capabilities of cardiac imaging by utilizing.a multi-part cardiac phantom and
applying a known kinetic model to synthesize kinetic data from static data, allowing for assessment of
kinetic modeling accuracy. The phantom was designed with four main components: two left-ventricular
(LV) myocardial sections and two LV blood-pool sections,.sizedfor end-systole and end-diastole. Each
section of the phantom was imaged separately while acquiring listamode data. These static, separate-
compartment data were manipulated into synthetic dynamic data using a kinetic model representing
the myocardium and blood-pool activity concentrations over.time and then combined into a set of
dynamic image frames and reconstructed. Regions ofinterest were drawn on the resulting images, and
kinetic parameters were estimated. This process was performed for three tracer uptake values (K3),
three myocardial wall thicknesses, 10 filter parameters, and 20 iterations for 25 noise ensembles. The
degree of filtering and iteration number were eptimized to minimize the root mean-squared error
(RMSE) of K; values, with the largést number of iterations and minimal filtering yielding the lowest error.
Using the optimized parameters, K; wasidetermined with reasonable error (~3% RMSE) over all wall
thicknesses and K; input values. This work'demonstrates that accurate and precise measurements of K;
are possible for the U-SPECT+ system used in this study, for several different uptake rates and LV
dimensions. Additionally, it allows for future investigation utilizing other imaging systems, including PET
studies with any radiotracer, as well as with additional phantom parts containing lesions.

1. Introduction

Coronary microvascular.disease (CMVD), or disease of the coronary pre-arterioles and arterioles, has
become an increasingly well-recognized cardiac pathology (Camici and Crea 2007) which contributes
significantly to cardiac morbidity and mortality (Bairey Merz et al., 2017; Gibson et al., 2000). The
coronary microvasculature regulates myocardial blood flow (MBF) in response to metabolic demand and
is critical in maintaining proper myocardial perfusion. MBF increases in response to cardiac stressors,
such as exercise or pharmacologic vasodilators. In the absence of flow-limiting epicardial coronary artery
lesions, the ability to increase MBF is a direct measure of coronary microvascular function (Ahmed,
2014). This is typically quantified using the metric of myocardial blood flow reserve (MBFR), which is
defined,as the ratio of MBF at stress to MBF at rest. Studies have shown that diminished MBFR is
correlated with poor cardiovascular outcomes in various populations (Majmudar et al., 2015; Murthy et
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al., 2014), and that determining MBF and MBFR improve the diagnostic and prognostic value over
myocardial perfusion imaging alone (Farhad et al., 2013; Herzog et al., 2009).

Developing methods based on imaging to measure MBF and MBFR for research inssmall animals such as
mice would be advantageous for evaluating new treatment methods for CMVD. However, such
measurements are currently challenging using mice due to their small size, even when utilizing
dedicated small-animal systems. Currently, mouse studies of CMVD have been limited to structural
studies or ex-vivo studies (Duncker and Bache, 2008; Moslehi et al., 2010; Chintalgattuet al., 2013).
Although PET is more commonly used clinically, in small animal imaging microSPECT typically has
superior spatial resolution to microPET due to the use of pinholes (Beekman 'and van der Have, 2007)
and has less expensive tracers, making it better suited than PET for this particulacapplication.

We are working to develop a non-invasive imaging technique to allow in-vivo and longitudinal evaluation
of MBFR in mouse models of CMVD (Guerraty et al., 2017). We have previously developed a protocol to
image mice dynamically under rest and stress conditions on a microSPECT system in order to measure
MBFR changes in wild type mice using customized kinetic modeling software (Johnson et al., 2016);
however, we currently lack a method to evaluate the quantitative accuracy of these studies, with regard
to imaging and modeling errors. An example of this work is'shown in Fig. 1, which shows slices of
reconstructed images and a corresponding time activity'curve of both the myocardium and the blood
pool. The tracer uptake rate constant, K;, which is necessary but hot sufficient for determining MBF,
should ideally be compared to some other "gold-standard" technique for evaluating quantitative
accuracy. Although it is possible to estimate MBF in.mice viainvasive methods, such as using fluorescent
microspheres, (Gervais et al., 1999), additional factors are required to determine K; from MBF.

Also, these MBF determination methods.are terminal methods do not allow for longitudinal studies and
are challenging to perform on the small'scale of mice.
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Fig. 1: An example of a previously acquired dynamic mouse acquisition. Top: the resulting time activity
curve when data were reconstructed in 10-second frames. Bottom: image slices from a 60-second
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acquisition starting at 320 seconds into the scan. These results show the approximate shape and
distribution of activity concentration in the myocardium and blood pool over time, and is highly
dependent on the amount of activity injected and the unknown K; of the subject.

In this work, we focus on evaluating the accuracy of rate constants determined from.dynamic cardiac
microSPECT by acquiring image data from a multi-compartment cardiac phantom té.compute synthetic
dynamic cardiac SPECT image frames, as well as corrections for resolution blurring.and spillover
(crosstalk) between the phantom's "myocardium" and its left ventricular "bloodspool"»This phantom
study allows for a known K; to be compared to imaging results that include effects attributable to
system noise, resolution, and kinetic modeling. Note that the determination of absolute MBF will
ultimately also require correction for the tracer-specific extraction fraction (EXF)frem arterial blood to
myocardial tissue which, itself, varies nonlinearly with blood flow for all butfreely diffusible tracers (e.g.,
H,'°0). While the EXF and its flow dependence have been evaluated for.several tracers in humans, they
have not yet been well characterized for SPECT tracers in mice; this will be the subject of future
research.

2. Methods

2.1. Phantom Description .

We have designed and printed a three-dimensional (3D) multi-compartment cardiac phantom (printed
by Solid Technologies, Inc. on an MJP Prolet 2500 systemiusing Visilet M2R-CL Rigid Clear material). The
phantom has two sections each of left-ventricular myocardium and left-ventricular blood pool, with one
section of each sized appropriately to represent end-diastole (ED), and the other for end-systole (ES),
where myocardial volume is preserved between the two states. This configuration can be seen in Fig. 2.
The ED blood pool was modeled as frustoconical'with a cap that was a portion of an ellipsoid. The
frustocone had length 5.8 mm and diameters of:2.5 mm and 2.3 mm at the basal and apical ends,
respectively. The ellipsoidal cap replacing the tip of the truncated cone had diameters of 2.3 mm
perpendicular to the cone’s axis and.1.0mm diameter along the cone’s axis, giving a total length of 6.3
mm; the frustocone and ellipsoid had matching diameters and slopes at their intersection. Similarly, the
ES blood pool was modeled as the same basic shape, but the frustocone had length 5.0 mm and
diameters of 2.0 mm and 1.8 mm ahhe basal and apical ends, respectively. The ellipsoidal cap had
diameter of 1.0 mm along the cone’s axis, giving a total length of 5.5 mm. For each blood pool, the
myocardial shape wasdetermined with three wall thickness. For ED the wall thicknesses were selected
to be of 0.75, 1.0, and 1.25:mm. For ES the wall thicknesses were determined by matching the
myocardial volume of the corresponding ED peice, giving wall thickness values of 0.94, 1.22, and 1.51
mm, respectively.

These phantom dimensions were chosen to represent the size of the myocardium of a typical adult
mouse. Fig. 2B shows three different sizes of ES myocardial parts, which are used in position 4 in Fig. 2A.
The different.sections were designed to fit into a pre-existing phantom tube and allow for filling of the
entire phantom with a uniform concentration of activity. To assemble the phantom, the base
myocardium, which has two narrow, solid rods extending the full length of the entire assembled
phantom, is placéd into the empty phantom tube and the myocardial cavity filled using a syringe. All
subsequent{ieces slide onto the two rods via the designed through-holes (seen in Fig. 2B), such that the
pieces,are properly aligned (Fig. 2C). Each piece is filled after being placed inside the tube, and after all
pieces arein place, the phantom is fully filled to remove any air bubbles, and then closed. The phantom
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is filled with a single syringe of activity, ensuring that all parts of the phantom have the same activity

concentration.
~

Fig. 2. The phantom design (A) contains ED myocardium (1), hot rod (2), ED blood pool (3), ES
myocardium (4) and ES blood pool (5) sections. Gaps are shown between pieces for clarity. The
hot rod section contains 6 equal-diameter, equally spaced rods and is;not used in this work but
was designed to demonstrate image resolution. Photographsy(B-E) show the 3D printed
phantom parts and tube for filling.

2.2. Data Acquisition

The phantom was filled and imaged three times, once for each set©f LV dimensions. The fill solutions
had %*™Tc activity concentrations of 9.5, 6.6, and 4.5 mCi/mL, respectively, for the 0.75, 1.0, and 1.25
mm ED wall thickness values. The 0.75 ED phantom was imaged for a total of 5 hours, 1 hour per
individual section, while the 1.0 and 1.25 ED phantoms were imaged for a total of 10 hours, 2 hours per
individual section. All acquisition data were collected in'list-mode on an MilLabs U-SPECT+ system,
having a spatial resolution of approximately:0.45 mm(van der Have et al., 2009).

All three acquisitions had between 5-10% and 8108 photopeak counts. Each section of the phantom was
imaged in a single bed position. The known configuration and dimensions of the phantom allowed us to
translate the system bed in such a way that each subsequent compartment would be correctly
positioned within the SPECT field of view (FOV) so that the projections properly aligned. This approach
also permits synthesizing data accor.Qing to/any defined time-activity curve, allowing us to merge
projection data from corresponding myocardial and blood-pool compartments after the temporal
scaling operation. The combination of high activity and long acquisition time provided a sufficient
number of events to divide a single.long list-mode data set into multiple synthesized dynamic data
frames.

2.3. Kinetic Modeling

The rate of uptake.of the tracer from the blood pool into the myocardial tissue, referred to as K3, can be
used to determine myocardial blood flow (MBF). In this work, we utilized a 1-tissue compartment
model, as shown in Fig. 3, where the tracer concentration in the blood pool, C,(t), is related to the tracer
concentration in the.myocardium, C(t), by the rates K; and k.. In this work, k> is assumed to be zero over
the course of imaging because we are primarily interested in imaging tracers that are rapidly
sequestered inside myocardial cells with little or no washout or recirculation, e.g., *"Tc-Sestamibi.
Equation (1) represents this model mathematically, and was used in our software to estimate K; (Klein et
al., 2010).
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5
1
2
3
4 Blood Myocardium
. Pool C.(t) c (1
7
8 Fig. 3: Diagram of a one-tissue compartment model, showing the rates of tracer(K; andkz)
?O movement between the arterail blood pool and myocardial tissue.
1 dc(t) .
12 = K Cy(t) — kyCe(t) = K;C,h(t) (for tracers with k»=0) Eqn 1
13
12 Additionally, our kinetic modeling software allows for mixing between the blood.peel and myocardial
16 concentration estimates obtained from image regions of interest (ROI). TheROI drawn over the
17 myocardium is composed of activity from the myocardium in addition to spillover from ventricles and
18 blood pool due to resolution limitations and, in the case of animal imaging,myocardial wall motion. The
19 blood pool ROI contains the activity inside the left ventricular blood. pool and'spillover from the
20 myocardium, and also in the case of animal imaging would include spillover due to wall motion. The
21 software accounts for this using a generalization of a mixing/matrix (Klein et al., 2010), as shown in Egn.
22 (2):
iy (CMyo(t)> _ (RT FA) (@(t)) )
25 Cpp(t) Fr Ra)\Cu(t) Eqn 2
26 where Cuyo(t) and Cgp(t) are functions over timeé of mean activity concentration from ROIs drawn over
27 the myocardium and blood pool, respectively, Cz(t)and Ca(t) are the true concentrations in the
28 myocardial tissue and arterial blood over time, respectively, Rr and Ra are the constants representing
gg the observed fraction of myocardial-tissierconcentration seen within the myocardial ROl and the
31 fraction of arterial-blood concentration seen.in the leftiventricular ROI. F4 and Frare the constant
32 fraction of spillover from the arterial blood inta'the myocardium, and from the myocardial tissue into
33 the left ventricle blood pool, respectively. In a mouse, F4 can arise from both resolution and motion
34 effects, as well as from blood perfusion within the heart muscle. The fitting algorithm, when provided
35 with the inputs Cuyo(t), Csp(t), Rrand Ra, uniquely estimates the resulting values of Fa, Fr, Ci(t), Ca(t), and
36 K.
37 N
38 Typically, following determination of Kz, MBF is subsequently calculated numerically using the Renkin-
39 Crone model as shownlin‘Egn.(3):
40
41 Ky, = MBF » EXF = MBEyx (1 — e~%e~F/MEF) Eqn 3
42 where EXF is the extractionfraction, a tracer-specific quantity that accounts for nonlinear tracer
43 extraction as a function of MBF and the effective capillary permeability times surface area product (Klein
44 et al., 2010). These parameters are condensed into a and B, for which values can be found in literature,
45 such as a=0.14 and B=0.44 m|/min/g for ™ Tc-sestamibi. These values were determined in an isolated
46 isovolumetric.contracting rabbit heart (Leppo and Meerdink, 1989) and we are unaware of
2; measurements of mouse-specific values. Although these literature values for rabbits could be applied to
49 mice studies, to avoid further inconsistencies being incorporated into results, this work will focus on the
50 accuracy of determining K; instead of MBF.
51
52 2.4. Dynamic-Data Generation
53 Following raw-data acquisition, the static data from each single phantom compartment were combined
54 and manipulated into synthetic dynamic data by randomly accepting events in proportions obtained
gg fromran,assumed kinetic model, mimicking actual dynamic mouse acquisitions. A probability function
57
58
59
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was used to accept or reject events from the original list-mode file to create each time frame of the
dynamic time activity curve. A constant scale factor, A, was used to control the fraction of events.from
the list-mode file in order to provide a count rate similar to that of animal studies. The blood pooland
myocardial compartments have unique probability functions that mimic a typical animal acquisition. For
each event in the corresponding myocardium or blood pool compartment data files, awuniformly
distributed random number, U[0,1), was obtained from a standard computer randem-number
generator. If that number was less than the calculated probability constant at a particular time point,
the event was used. The blood pool probability was determined using Eqn. 4, based on.an assumed

Gaussian shape for the input function, similar to what we have seen experimentally (Fig. 1):

t—tg)?
P, (1) = /1e_( 20%) Eqn4
where P, (t) is the probability "input function" of the arterial blood pool, t,is the peak time of the
activity injection, A is a scale factor to control the count level, and o isithe width (standard deviation) of
the injection pulse. A1 was chosen to give an appropriate number of counts.and to ensure that the
calculated probability was never greater than 1 at any time. A separate A was determined for each
phantom acquisition, but it was the same for both the myocardial and:blood pool probability functions.
Its value was determined by ensuring that an approximately/equal'number of events occurred for each
phantom acquisition and were matched to an example mouse acquisition. Both to (injection peak time)
and o (width of injection bolus) are constant for all protecals.in this study.
For the myocardium probability, we impose the constraint of the 1-tissue compartment model from
Eqn. 1, as seenin Egn. 5:

'-fo)z

(¢
t,, t o, ———0/ t—t —t
Pe,(t) = Ky [y dt' Pe, () =Ky A [, dt' e 2% = Ki Ao \/g [erf( ﬁ;) - erf(\/_Tz)] Eqn 5
where P¢, (t) is the probability function of the myocardium and K; is the uptake rate of ®™Tc-sestamibi
from the blood into the myocardium (min).

To mimic unpublished rest/stress animal data, the phantom data were processed into 5-min acquisitions
with 10-second dynamic frames, with the center of injected activity occurring at 60 seconds into the
scan — the actual injection would occur a few seconds prior to the peak in a mouse. For each phantom,
the input K; value was set to be 0.5 min%,4.5 min?, or 2.5 min* to represent rest and stress. These
values were chosen as they fall within the expected range of values for mice (Croteau et al., 2015). Both
myocardial and blood pool probability/functions are shown in Fig. 4. Both the simulated myocardial and
blood pool probability functions are similar in shape to previously collected animal data, an example of
which is shown in Fig.duThe differences between the probability functions and the animal data are due
to the limited dynamic sampling of the SPECT data in combination with spill-over between the blood
pool and myocardium animal ROls which is a result of both system resolution and cardiac motion.

-3
2x10
__ P

6 A e

~ _ P (1 K,=05
T

g5
= JR— PCT(U, K1= 15
]

4 —
> o Pe K =25
=3
L
8
82
o

0 50 100 150 200 250 300
Time (sec)

Page 6 of 18



Page 7 of 18 AUTHOR SUBMITTED MANUSCRIPT - PMB-108361

7
1
2
3 Fig. 4. Examples of the arterial and tissue probability functions for a five-minute acquisition with
: the injected activity peak occurring at 60 seconds, showing the three different K; values (0.5
6 min?, 1.5 min’%, or 2.5 min) used in this work to represent a range of rest and stress in mice.
; 2.4.1. Dynamic End Diastole and End Systole Image Ensemble Generation
9 To simulate the dynamic data, the equations above were averaged over the 10 seconds of.each dynamic
10 frame in 1-second steps, with A chosen such that the myocardial concentration was approximately that
11 obtained from mice rest/stress data (Guerraty et al., 2017). The appropriate probability. function was
12 used for each part of the phantom, applying a half-life correction based on each part’s,acquisition start
13 time. The resulting dynamic blood-pool and myocardial list-mode data were combined into a single
15 dynamic data set and reconstructed using the USPECT+ system’s reconstruction software. This gives,
16 from a single phantom, three dynamic data sets: (1) the combined blood pool and myocardium for ES;
17 (2) the combined blood pool and myocardium for ED; and (3) the mixed.model of EDES which represents
18 the data that might be obtained from a moving (beating) heart (described below). This process is
19 illustrated in Fig. 5. This probability model was then re-applied 25 times forieach phantom data set and
20 K; input combination to create multiple noise ensemble image'sets. Each.individual noise ensemble set
21 was created with the same probability function parameters (to, o, A, and K;). Each phantom data set has
;g avery small 4, all less than 0.01, which allows for statistically independent noise realizations.
24 Pe, (1) , .
25 4’ Comb!neq Reconstruction  SIGEMIT
2 P T s N i
27 4> Dynamic BP
;2 Fig. 5. Flow chart depicting the process of turningithe original phantom’s list-mode data into
30 dynamic images.
31
32 2.4.2. Motion Estimation Ensemble Generation
33 To simulate basic cardiac motion, weused a combination of the raw data from both the ED and ES
34 sections. In humans, it is typical for.the myocardium to spend from 1/3 to 3/8 of the cardiac cycle in
35 systole and the remaing time in diastole (Zipes et al., 2014) . However, mice have a higher heart rate
36 than humans and therefore spend less time in diastole. To compensate for this, we chose to pull events
37 from the ED and ES compenents of'the raw list-mode data in a ratio of 60% ED and 40% ES based on
38 . . . .
39 observations from unpublished mouse echo data. These data follow the same processing as shown in
40 Fig. 5, except the ‘InputMyo’ andy‘Input BP” boxes are the mixed ratio list-mode data.
41
42 2.5. Dynamic Data Processing
43 The static acquisitions of each\phantom compartment were also individually reconstructed. This
44 reconstruction was.then used to define 3D ROIs for each phantom part (ED myocardium, ES
45 myocardium, ED blood pool, ES blood pool). The ROIs were defined by including all voxels that have an
46 intensity of 50% of higher of the maximum image intensity of the reconstructed images. Unique ROls
Z; were defined/for combination of iteration number and post-reconstruction filter value. ROls were then
49 applied to the ES.and ED reconstructed images for each dynamic data set, including each phantom, each
50 K; input value, and each ensemble noise realization. At each dynamic time point, the mean ROI value
51 was‘determined and used to create time-activity curves. The time-activity curves were then used in our
52 customized kinetic modeling software to estimate K; from the reconstructed images. For the motion-
53 blurred,EDES data the same method was used, except that the static, part-weighted data (60% ED, 40%
g‘S‘ ES) were reconstructed and used as the basis for the ROIs for the combined EDES ensembles.
56
57
58
59
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2.5.1. Determining Rr and Ra fit inputs

To determine the required fitting constants Rt and Ra, we first calculated the true activity-concentration
values in the myocardial tissue, C7(t), and in the arterial blood pool Ca(t). First, utilizing the known
activity concentration of the phantom, A, an effective activity concentration, Az was calculated,
correcting for the differences in the reconstructed phantom’s frame duration, trame, and that of the
phantom compartment in question, t.c, as seen in Eqn. 6 and 7, where T is the halfslife of ™ Tc:

tframe ot tac -t
Asy Jy7eme 2 ir dt = A [[*2" e de Eqn 6
—tacq
1-2 7
Aeff =4 “tframe Eqn 7

1-2 T ~_
The effective activity concentration was then used to determine the true concentration of activity in the

myocardium and blood pool using the probability functions defined ilnnEgn. 4 and'5, averaged over the
10-second frames where P, (t) and P, (t) are the average probability for.the time frame containing t,
as shown in Egn. 8 and 9:

Ca(t) = P, (8) Aesy Eqn 8
Cr(t) = P (8) Aesy Eqn 9

To determine Ry and Ra estimates, we used equations ffom the mixing matrix in Eqn. 2 and performed a
least-squares minimization over all time frames as seen,in£gn. 10and 11:

S1 = Yau rrames [Cop(t) = FrCr(t) — RaCa(D)]2 Eqn 10

Sz = Yau rrameslCuyo(t) — RrCr(t) — FaCa(£)]* Eqn 11
where Cuyo and Cgpr are parameters obtained based.on Ra; R, Fa, and Fr.

Taking the derivative of Eqn. 10 with respectito Ra'and Fr and Eqgn. 11 with respect to Rr and Fa gives
Egn. 12 and 13, (Fr and Fa not shown):

Y CrCa¥ Crlpp— X Cr° X CppCa
(ZCTCA)Z—ZCAZZgTZ

_ XCTCa Y CaCymyo— 2Ca” Y CMyoCr

Ry = (X CrCa)?-YCa’ycp® N Ean 13

Ry = Egn 12

2.6. Reconstruction and Fit Evaluation

Determining the optimal number ofiiterations and smoothing

As with most iterative reconstruction algorithms, determining a balance between reconstruction
iteration number and smoothing can be difficult. In this work the optimization of the number of
iterations and amagunt smoothing parameters with respect to K; accuracy allows for an estimate of error
of K; and to alsordéetermine.if, and how much, different K; values both the optimized reconstruction
parameters and the'resulting K; error. For this work, we reconstructed each noise ensemble and K;
combination of phantom acquisition to determine an optimal iteration and smoothing combination.
Each data’set was reconstructed with 11 different smoothing parameters, using a Gaussian filter of 0,
0.1,0.2,0.3,0.4,0.5,0.6,0.7, 0.8, 0.9, or 1.0 mm standard deviation, and for each of 20 iterations,
always-using 4 subsets. A separate ROI for each iteration and smoothing combination was determined
by using 50% of the maximum of the individually-reconstructed static phantom segments for a matched
number of iterations and smoothing parameter value. Rsand Rr were determined as described above for
each noisedinstance, smoothing and iteration combination. For each smoothing and iteration
combination, the mean of Raand Rrover all noise realizations was determined and used as an input into
the fitting software in conjunction with the ROI-determined time activity curves. The MSE error of K;

Page 8 of 18
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value returned by the fit compared to the input ground truth was then used as a metric to determine
the optimal levels of smoothing and number of iterations.

2.6.1 Sensitivity of K1 to Rr and Ra

As Rrand R, are required as an input into our fitting software, understanding the error.associated with
their estimate is critical for understanding their effects on the fitting accuracy of Kyand subsequently
MBF. In this phantom study, we accurately estimate both Rrand R4, which includées effects due to
resolution and partial-volume spillover. In mice, this evaluation is more challenging, asiit not only
includes effects of resolution and spillover, but also the effect of cardiac motion. To estimate the effect
of inaccurate Rrand R on K; accuracy, we can compare the kinetic modeling fits of the perfect Rrand Ra
values calculated from equations 12 and 13 for each noise realization from that of results when the
mean Rrand R, of the 25 noise realizations is used.

3. Results

This work first establishes that a single phantom acquisition can'be turned into synthetic dynamic data
which can be subsequently used as input into kinetic modeling software for determination of K;. Next, it
investigates the effect of the input Rr and Rx values on K accuracy taking into consideration the
different phantom types (ED, ES, and EDES-combination), iteration.number and smoothing amount.
Finally, we evaluate the accuracy of K; in a variety of cases(in order to gain insight into the amount of
error from system noise and the kinetic modeling software. This allows for understanding of the
limitations of kinetic modeling when moving to'in-vivo mice studies.

3.1. Dynamic Data Example

A short, full-phantom acquisition was imaged and reconstructed to allow for visualization of the entire
phantom and is shown in Fig. 6. Each phantom compartment is clearly visualized, along with activity that
can be seen along the edges and hear the lid of the’ phantom tube.

Fig. 6: Coranal slice of the entire cardiac phantom with an ED wall thickness of 1.25 mm (10
iterations, 0.25/FWHM post-filter), showing, from bottom to top, the ED myocardium, ED blood
pool, ES myocardium, and the ES blood pool.

The results from.a single noise realization of the dynamic data-processing scheme are shown in Fig. 7 for
the 1.25 mmiED phantom size, K; of 0.5 min’, reconstructed with no filtering for 20 iterations with 4
subsets.
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T=5sec T =45sec T =55sec
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Fig. 7: Central slice of reconstructed dynamic data over time, visualizing the wash-in and wash-
out of the myocardial and blood-pool compartments.
~

For the same data set as in Fig. 7, the previously determined ROIs for,the blood pool and myocardium
were applied and used to determine the required input into the kinetic modeling software. The program
was then run using the average of the Ra and Ry values determined from equations 12 and 13, for the
noise ensemble, 0.841 and 0.839 respectively, for the particular iteration number and filter value. The
resulting arterial and tissue components were then determined by the kinetic modeling software, with
the resulting time-activity curves shown in Fig. 8.

~ 15000 ) «/BP ROI ) Y |
BP Data Fitted
* Myo ROI
Myo Data Fitted
100000 § §F 0 Arterial Component ||

----- Tissue Component

5000

Activity Concentration (uCi/mL

0 100 200 300
Time (seconds)

Fig. 8: Example time-activity.curves showing input into the kinetic modeling software including
the blood pool ROI (BP RO|),\nyocardiaI ROI (Myo ROI), their fitted input curves (BP Data Fitted
and Myo Data Fitted), and theresulting separated curves (dotted lines) that were used to
determine K.

3.2. Variation of Rr and Ra

For each reconstruction setting, including the iteration number, filter parameter, phantom type (ED, ES
and motion-estimating EDES combination), wall thickness (0.75, 1.00, and 1.25 mm), K; (0.5, 1.5, and 2.5
mint), and noise realization, Ry and R, were determined from equations 12 and 13. Fig. 9 shows an
example of a histogram of the noise ensemble of the determined Rrand R4 values for the ED phantom
with a wall thicknessof 0.75 mm, K; of 0.5, and no filtering, at two different iteration numbers. Visual
inspection shows that the Rr and R, values obtained from the different noise realizations were grouped
quitettightly for.each number of iterations, and that increasing iterations changed the values of the
recovery coefficients. The results of other phantom and reconstruction combinations were similar (not
shown).

Page 10 of 18
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18 with a wall thickness of 0.75 mm, K; of 0.5 min’, and no filtering.
19
20 In addition to looking at the individual Rrand Ra values, it is useful to'determine if there are differences
21 at the noise-ensemble level. These data allow for better understanding of how differences in Rrand Ra
22 values may affect quantification in animal studies if inaccurate Rr and R4 values are utilized. Therefore,
;Z Fig. 10 and Fig. 11 show both the mean and percent standard.deviation of Rr and Ra values, respectively
25 for a variety of different phantom and reconstruction combinations. All results are in the expected range
of zero to one, where one would imply a perfect reconstruction with complete recovery of all activity
26
27 falling within the ROI. The mean Rr and Ra values mostly stabilize after five iterations, and comparing
28 across different extremes of filtering, wall thickness and.part type do not affect the general trends of the
29 mean values.
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Fig. 10: The mean (a) and percent standard deviation (b) of the noise-ensemble Rrvalues for the
ED phantom with a wall thickness of 0.75 mm over iteration and varying Gaussian filtering. To
compare across phantom types, (c) shows the mean Rracross the three different phantom types
(ED, ES and EDES motion-estimation) at two different filter levels for the 0.75 mm wall thickness
and K; of 0.5 min™. Similarly, (d) compares the mean Ry across varying wall thickness at two
different filter levels for the ED part type and K; of 0.5 min™.
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Fig. 11: The mean (a) and percent.standard deviation (b) of the noise-ensemble R4 values for the
ED phantom with a wall thickness of 0.75 mm over iteration and varying Gaussian filtering. To
compare across phantom types, (c) shows the mean R, across the three different phantom types
(ED, ES and EDES motion-estimation) at two different filter levels for the 0.75 mm wall thickness
and K; of 0.5 min:l. Similarly, (d) compares the mean R4 across varying wall thickness at two
different filter levelsifor the ED part type and K; of 0.5 min™.

Similar to plots.shown in:Figi 10 and 11, Fig. 12 and Fig. 13 show trends of Rrand Ra, respectively, across
different phantom sizes«Fig»12 shows that Rris lower for the 1.25 mm wall thickness phantom
compared to thed mm phantom while Fig. 13 shows that R4 for 1.25 mm wall thickness phantom is
similar or'slightly-higher compared to the 1 mm phantom.

Page 12 0of 18



Page 13 of 18

oNOYTULT D WN =

QuuuuuuuuuubdbbdDDdDDDDMDMNDEDMNDWWWWWWWWWWRNNNNNNNNNN= =2 2 29299230999
VWO NOOCULLhAWN-_rOCVONOOCTULDWN—_,rOCVOONOOCULDDWN=—_,rOUOVUONOOCULPMNWN—_ODOVUONOUVPSD WN =0

AUTHOR SUBMITTED MANUSCRIPT - PMB-108361

1 T T T
09F //‘
0.8
o207
=
g
= 06F
05 — Gauss StdDev = 0 mm
— Gauss StdDev = 0.2 mm
04- — Gauss StdDev = 0.5 mm
’ ~ Gauss StdDev = 0.8 mm
— Gauss StdDev = 1 mm
o 5 10 15 20
(a ) lteration ( b)
1
09
08
o 070
=
g
06f
— ED. Gauss StdDev = 0 mm -..| 7 ED.Gauss StdDev = 0 mm
ost —ES, Gauss StdDev = 0 mm —ES, Gauss StdDev = 0 mm
’ J,-/"‘—:""'" — EDES, Gauss StdDev = 0 mm — EDES, Gauss StdDev = 0 mm
0al ’}55' -~~~ ED, Gauss StdDev = 1 mm ~~~ED, Gauss StdDev = 1 mm
! 7 ~""~ES, Gauss StdDev = 1 mm ~""~ES, Gauss StdDev = 1 mm
h -~~~ EDES, Gauss StdDev = 1 mm -~~~ EDES, Gauss StdDev = 1 mm
0 5 10 5 10 15 20
(c) Iteration Iteration

or the ED phantom with a wall thickness of
rying Gaussian filtering. To compare across
racross the three different phantom types (ED, ES
1.25 mm wall thickness, respectively, at two

1
09
081
07
<
oc
S 06
@
=
05
—Gauss StdDev = 0 mm —Gauss StdDev = 0 mm
——Gauss StdDev = 0.2 mm 0.4 —— Gauss StdDev = 0.2 mm
— Gauss StdDev = 0.5 mm — Gauss StdDev = 0.5 mm
~ Gauss StdDev = 0.8 mm 031 ~ Gauss StdDev = 0.8 mm
— Gauss StdDev = 1 mm 02 — Gauss StdDev = 1 mm
10 15 20 "o 5 10 15 20
Iteration Iteration
(a) (b)



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - PMB-108361

14

0.9y T T 1 08
08| - 1 028
|/
06! ‘." I/ 1 067
< ! <
L [ / i | o« | [————— Y G |
g 08 ) cos |
2 o ) 2 T e
odf I/ 7 -..--{—ED.Gauss StdDev =0 mm | 04 A H
! - —ES, Gauss StdDev = 0 mm T ~—ES, Gauss StdDev =0 mm
03r F/ — EDES, Gauss StdDev = 0 mm|| 03r /7, — EDES)Gauss StdDev = 0 mm
iy
F ED. Gauss StdDev = 1 mm o “~ED, GaussStdDev = 1 mm
oz ¢ ---—ES, Gauss StdDev=1mm || oz - ---~ES, Gauss StdDev = 1 mm
---— EDES, Gauss StdDev = 1 mm ---— EDES, Gauss StdDev = 1 mm
01 - = 01 - - e =
0 5 10 15 20 0 5 10 15 20
(C) lteration (d) wation

Fig. 13: The mean of the noise-ensemble R4 values for the ED phantom with a wall thickness of
(a) 1 mm and (b) 1.25 mm over iteration and varying Gaussian filtering. To compare across
phantom types, (c) and (d) show the mean R4 across the‘three different phantom types (ED, ES
and EDES motion-estimation) for the 1.0 and 1.25 mmwall thickness, respectively, at two
different filter levels and K; of 0.5 min™.

3.3. Evaluation of K; Accuracy y

To estimate error in the accuracy of K; estimation, the meanvalue of Rrand Rx determined for each
noise ensemble (instead of each determined Rr and Ravalues from equations 12 and 13) were used as
inputs into the kinetic modeling software in conjunction with the original time activity curve inputs. This
allows for an estimation of how accurate K; erromis.when population-average values of Rrand R, are
used, as is likely to occur when imaging animahsubjects. Additionally, this allows for insight into an
appropriate number of iterations.and amount of smoothing for the noise-level of images produced in
this study. Fig. 14 shows the percent roet-mean-square error (% RMSE) for a phantom noise ensemble
of the ED phantom with a wall thickness 0f0.75 mm and a K; of 0.5 min™ by both filter amount and
iteration. Increasing the number of iterations decreases the % RMSE, while less filtering also decreases
the % RMSE. This trend is similar acress:allphantom types, wall thicknesses, and K; values (data not
shown). This implies that for/the most daccurate quantification, more iterations and limited filtering is
desired. To better visualize thewrange of error, for the 20™ iteration and no filtering, Fig. 15 shows the K
% RMSE for each phantom.type across each of the three K; values for each of the different wall
thicknesses. The values:range from less than 1% to 3.5%. The highest error is associated with the
smallest wall thickness, which could be due to image resolution.
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Fig. 14: The percent RMSE of K; when run with the mean Rrand R4 as input into the kinetic
modeling software for the ED phantom with a wall thickness of 0.75 mm and a K; of 0.5min™,
The results are shown by both amount of filtering (a) and iteration (b).
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32 Fig. 15: The K; percent RMS.is shown for @ach phantom part combination (ED, ES, and EDES
motion-approximation) at wallithicknesses 0.75, 1.00, and 1.25 for (a), (b) and (c), respectively.

36 4. Discussion and Conclusion

37 N

38 This work demonstrates that for the modeled cardiac phantom, reasonable error (~3% RMSE) in

39 estimation of tracer uptake rate is possible for the U-SPECT+ system used in this study over several
uptake rates and LV dimensions. This error includes effects of system noise and resolution on
reconstructed imagessThe main.benefit of using this method to assess the tracer uptake rate is that
43 there is a known ground truth that can be used to evaluate accuracy.

45 Figure 9 showsthat the values for the recovery coefficients, Rr and Ra, have a small variance, but the
46 mean varies as a function of iteration for the ED phantom. Figure 10 reinforces that and shows that the
47 values for these fitting parameters converge within about 20 iterations. The converged values,

48 unsurprisingly, depend on the amount of post filtering. Similar results are seen in Figure 11 for the ES
phantom.

52 Figures 12 and 13 show trends of Rrand Ry, respectively, across different phantom sizes. Fig. 12 shows
53 that there is'some variation in Ry across different wall thicknesses, but no clear trends are present. Fig
54 13 shows that there is little difference across wall thickness sizes for Ra, implying that the location and
55 size.of the LV ROl makes the results mostly independent of wall thickness
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Figure 14 shows the Root-Mean-Squared (RMS) Error for K;. The uncertainty in K; increases with more
post filtering. The uncertainty decreases with number of iterations. This latter observation is consistent
with the results of Figures 9-11, indicating the stability of the mixing parameters at higherliteration. The
former observation, especially in combination with the observation on number ofiiterations;suggests
that sharper images give more quantitatively accurate measurements for this application. Further,
although one cannot conclude that the quantification is optimized at 20 iterations,it is clear from Fig. 14
that the RMSE at 20 iterations is likely very close to the asymptotic limit for reasahable computational
time for the reconstructions.

Figure 15 shows that the minimized RMS error for K; is about 2-3% for the range of K; values and
configurations studied. It is difficult to discern consistent trends, suggesting thatthehoise on the data
points is masking those trends.

The current phantom was designed to mimic cardiac imaging of wild-type mice of different sizes. A more
disease-relevant model, which is achievable via 3D printing, wouldincorporate a myocardial lesion.
Determination of the effect of a lesion on the estimation of KyWouldallow for additional understanding
of the sensitivity of SPECT’s ability to detect lesions, or changes in lesions, in small animals. This would
be especially useful when evaluating treatment studies of disease models.

Although this work focuses on the dynamics of a particular/tracer (’ngc — Sestamibi) and using the U-
SPECT+ system, one advantage to this phantom,and the processing methodology is that it can easily be
applied to other imaging tracers, including PET tracers and systems. Future work could allow for
comparison of quantification accuracy between these different tracers and systems to assess which is
likely to give the most accurate and precise results. Additionally, our current kinetic modeling assumes
that k; is zero, which — though a valid assumption:for Sestamibi — is not true for all tracers. The manner
in which data are modeled in this work easily-allows for the myocardial and blood pool probability
curves to be changed to accommaodate more complicated kinetic models, such as those with more
compartments. All that is required is torchange Eqns. 4 and 5 which are used to generate the list-mode
image data.

Other changes to the input probability curves (Eqns. 4 and 5) in future work could allow for more
accurate modeling of biological processes and its effects in downstream accuracy. For example, in
unpublished work, we have previously evaluated Rrin mice by excising the myocardium directly after
imaging and R, in a separate group of mice by labeling of red blood cells. In the process of this work, we
have estimated the fraction ofiblood that is present in the myocardial tissue. This blood fraction could
be incorporated into to the input probability curve to better mimic real conditions of potential error.

Although this work currently focuses on a single small-animal SPECT system, the use of a phantom to
estimate the quantitative capabilities of dynamic imaging has great potential to evaluate sources of
error not only inithe field of small-animal cardiac applications, but also in other applications for which
differentyphantoms could be designed. It is highly likely that the optimal reconstruction parameters of
other SPECT or PET systems would follow the same trends of seeking image sharpness for quantification.
Furtherythissphantom could be used to determine the values of mixing parameters as a function of
heart size and adjust those parameters per mouse for more accurate results. In summary, the phantom
is very useful for developing quantification related to kinetic modeling of flow tracers in a mouse heart.

This work has several limitations. First, the shape of the blood-pool curve is an estimate of a typical
injection curve. This limits the application of these results to cases with similar injection curves and
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would not extend to cases where a poor or unusual injection may substantially change the shape of the
input function. These types of injections are likely to be excluded from most robust studies:

Another limitation of this work is that the spillover fractions are dependent on the,ROI used for analysis.
There are a variety of different ways one can draw a ROl on images, but determiningthem based on
50% of the maximum is a repeatable method that allows for consistency across all of the different
reconstructions in this phantom study. Using a different method would likely change the resulting
mixing parameters, but the focus of this work is on how the range of these values,effects the accuracy of
K; determination. It is not expected that changing the ROl method would vastly change the accuracy of
K;. Additionally, this method of ROl determination would not be applied to.images with heterogenous
uptake in the myocardium, as it would fail to include regions of low uptake. Alternative methods of ROI
determination would need to be used to properly address this, and would likely involve hand-drawn or
semi-automated methods similar to those currently used in animal anhd.human imaging.

Additionally, the current method used to estimate motion does not.fully capture the true motion during
a heartbeat. The weighted-average of the two different positionsiprovides‘at least some idea of the
what the influence of motion would be, but further conclusions about.motion would require methods
that better estimate the stages between ED and ES, in addition to the final ED and ES positions.

In conclusion, we have designed and utilized a cardiac phantom to evaluate the robustness of our
dynamic SPECT imaging capabilities. We have determined the necessary input parameters Rrand Rafor
our kinetic modeling software and evaluated the effect of uncertainty in these values on the kinetic-fit
results for K;. This shows that these methods are likely to be useful in mice even when using estimated
values of Rrand Ra. We determined that.reconstruction using a relatively high number of iterations with
minimal post-filtering led to the lowest errors onithe estimates of K;. Finally, there is a wide variety of
additional studies and applications for which this phantom could be utilized.
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