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ABSTRACT. We have analysed the statistical characteristics of streak artefacts on CT
images using the statistics of extremes, and have devised a new method of evaluating
streak artefacts on CT images. The CT images of four polymer tubes placed on the chest
wall of a commercially available chest phantom were used as the target objects for our
analysis. 40 parallel line segments with a length of 20 pixels were placed perpendicular
to numerous streak artefacts on the polymer tube image, and the largest difference
between adjacent CT values in each of the 40 CT value profiles of these line-segments
was employed as a feature variable of a streak artefact; these feature variables have
been analysed by extreme value theory. Using the mean rank method, a Gumbel
distribution was shown to be the most suitable extreme value distribution for the
largest difference between adjacent CT values in each CT value profile. This enabled us
to demonstrate that the streak artefacts on CT images can be statistically modelled by a
Gumbel distribution. Both the location parameter and the scale parameter of the
estimated Gumbel probability density distribution were large on the CT slices in which
the shoulder bone or liver was included.
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In the past few decades, CT scanners have made
remarkable progress, thanks to the development of
image processing technology and the introduction of a
helical scanning algorithm. These improvements have
made it possible to depict tiny and subtle lesions, such as
small pulmonary nodules. Furthermore, helical CT
reduces scan times, enabling an entire scan of the chest
and abdomen to be performed in a single held breath. In
the near future, by superseding conventional radio-
graphy systems, CT will play a central role as a clinical
screening tool (e.g. in lung cancer screening).

However, the radiation doses of CT examinations are
relatively high compared with those of the other
radiological modalities. More recently, many studies
have been conducted on low-dose CT screening with a
multidetector row helical CT (MDCT) scanner [1–5]. The
potential disadvantage of performing low-dose CT
examinations is the degradation of image quality as the
radiation dose is reduced. In particular, the streak
artefacts that are problematic for image diagnosis
increase noticeably in low-dose CT images [6, 7].
Although the exact mechanism of these streak artefacts
remains obscure, it is safe to say that they are caused by
X-ray photon starvation; in other words, when an X-ray
beam passes through highly attenuated areas such as
shoulders, noisy projections will be produced in the

attenuation direction and the reconstruction process will
have the effect of greatly magnifying the noise, resulting in
streak artefacts on the CT image [8, 9]. Thus, it is important to
evaluate such artefacts in relation to a given radiation dose.

At the present time, there are several methods for
quantifying the spatial resolution and image noise of CT
images; for example, the former is evaluated by a
modulation transfer function [10, 11] and a full-width
at half maximum value of a d functional image [12, 13],
whereas the latter is assessed quantitatively by a
standard deviation (SD) of pixel values in a region of
interest placed in a homogeneous background [14, 15].

However, as there is no definitive quantitative
descriptor of artefacts on CT images, each one has to
be assessed by a human observer based on a rating
method [6, 16–19]. In order to obtain an accurate result
using this method, many observers must participate in
image-reading experiments, which are time-consuming
and tedious. Therefore, if an objective and quantitative
method of evaluating artefacts on CT images is devel-
oped, it will surely prove very useful.

As a result, we have analysed the statistical character-
istics of streak artefacts on CT images using the statistics
of extremes [20], and have devised a new method of
evaluating them.

Methods and materials

CT image acquisition

In this study, a commercially available chest phantom
(CT Torso Phantom, CTU-Type 4; Kyoto-Kagaku Co.
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Ltd, Kyoto, Japan) was used. To evaluate streak artefacts
and noises against homogeneous backgrounds, four
polymer tubes filled with water were placed on the
chest wall of the phantom; the direction of the long axis
of the tubes was set parallel to the sagittal direction of the
chest phantom. The space between polymer tubes I and
II was 50 mm, between III and IV it was 50 mm, and
between II and III it was 70 mm. Each tube was made of
polyethylene with a diameter of 30 mm. The entire chest
phantom was scanned using a 16-multidetector-row

helical CT scanner (Aquilion; Toshiba Co. Ltd, Tokyo,
Japan) with a collimation of 1 mm, a pitch of 1.5, a 0.5 s
gantry rotation period, a tube voltage of 120 kVp, and a
tube current of 10 mA (low enough to generate streak
artefacts on CT image for all slices). Under routine
conditions, tube current was 300 mA. All CT images
were reconstructed with three different reconstruction
kernels: FC01 (for soft-tissue imaging), FC50 (for lung
imaging), and FC52 (for high-contrast lung imaging). The
images were transferred from the CT scanner to a

Figure 1. (a) CT image of the upper zone of a chest phantom and four polymer tubes filled with water placed on the chest wall.
The images of polymer tubes I, II, III and IV were used as target objects to evaluate streak artefacts. (b) Magnified image of
polymer tube I, which was reconstructed by the FC01 reconstruction kernel. (c) Magnified image of polymer tube I, which was
reconstructed by the FC50 reconstruction kernel. (d) Magnified image of polymer tube I, as reconstructed by the FC52
reconstruction kernel. Streak artefacts increased in order of FC01,FC50,FC52.
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personal computer using the standard file format with a
matrix size of 5126512 and a grey level of 16 bits
according to Digital Imaging and Communications in
Medicine (DICOM) format. Figure 1 shows sample
polymer tube images.

Extreme value theory

The CT images of the four polymer tubes placed on the
chest wall of the phantom were used as target objects for
our analysis of the streak artefacts. We measured 40
parallel line profiles of CT numbers — each 20 pixels in
length — in the central portion of each polymer tube
image, and placed them almost perpendicular to
numerous streak artefacts. Here, the streak artefacts on
the polymer tube images were visually recognized on the
CT images through a display window with a width of
2500 Hounsfield units (HU) and a level of –600 HU (these
display window conditions correspond to those for
evaluating lung fields). The directions of the streak
artefacts were manually determined by one of the
authors. The CT values fluctuate greatly around the
streak artefacts and it is impossible to identify the exact
positions of the artefacts on each CT value profile, as
value variations caused by the artefacts cannot be
distinguished from other unspecified image noise.
Thus, it is very difficult to analyse the artefacts by
conventional statistical parameters, such as the mean and
SD of CT values.

From these CT value profile curves, the largest
difference between adjacent CT values was estimated
empirically to be attributable to streak artefacts, and that
became our focus. Furthermore, the 40 largest differences
between adjacent CT values can be considered as the
largest among an extensive set of independent and
identically distributed random values, and can be
modelled by a generalized extreme value distribution
[20]. Here, we confirmed that the largest values did not

seriously violate the assumption of independence by
drawing their scatter plots. We therefore consider the
largest difference between adjacent CT values in each CT
value profile as a feature variable of the streak artefacts,
and have analysed them using the statistics of extremes
[20].

The statistics of extremes states that the probability
distribution of the largest values among a large set of
independent and identically distributed random values
will asymptotically converge to one of the generalized
extreme value distributions. That is, the maximum of a
sequence of observations will be approximately distrib-
uted as a generalized extreme value distribution, which
can be further categorized into the following three
distributions: Gumbel distribution (Extreme Value Type
I), Frechet distribution (Extreme Value Type II), and
Weibull distribution (Extreme Value Type III) [20]. These
are the limit distributions, regardless of the underlying
distributions such as the normal distribution; in this
study, the distribution of CT value variations caused by
both streak artefacts and other unspecified image noises
was considered to be the underlying distribution. The
three classes of limit distributions for extreme values
exhibit different behaviour in the extreme tail of the
underlying distribution. Those distributions whose tails
decrease exponentially, such as the exponential distribu-
tion, lead to the Gumbel distribution (Equation 1); those
whose tails decrease as a polynomial, such as Student’s
t distribution, lead to the Frechet distribution (Equation
2); and those with finite tails, such as the b distribution,
lead to the Weibull distribution (Equation 3) [20]. These
distributions are expressed as follows:

F (x)~exp �exp � x{b

c

� �� �
ð1Þ

F (x)~exp � x{b

c

� �{a� �
ð2Þ

Table 1. Relationship between the largest difference between adjacent CT values in each CT value profile and the cumulative
probability estimated by the mean rank method (n540).

Order Estimated cumulative
probability

Largest difference Order Estimated cumulative
probability

Largest difference

1 0.0244 143 21 0.5122 218
2 0.0488 151 22 0.5366 218
3 0.0732 155 23 0.5610 221
4 0.0976 164 24 0.5854 224
5 0.1220 167 25 0.6100 235
6 0.1463 168 26 0.6341 236
7 0.1707 176 27 0.6585 238
8 0.1951 184 28 0.6829 239
9 0.2195 184 29 0.7073 244
10 0.2439 185 30 0.7317 245
11 0.2683 186 31 0.7561 256
12 0.2927 187 32 0.7805 263
13 0.3171 187 33 0.8049 275
14 0.3415 187 34 0.8293 278
15 0.3659 188 35 0.8537 286
16 0.3902 197 36 0.8780 301
17 0.4146 204 37 0.9024 303
18 0.4390 206 38 0.9268 308
19 0.4634 212 39 0.9512 363
20 0.4878 214 40 0.9756 382
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F (x)~exp � b{x

c
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where F(x) is the cumulative probability function for the
maximum random variable x, and a, b and c are shape,
location and scale parameters, respectively. The shape
parameter corresponds to the shape of the probability
density distribution; the location parameter to the mode
of that distribution; and the scale parameter to its
variance.

Estimation of distribution of extreme values

The unknown cumulative probability function F(x) can
be estimated using the mean rank method with ‘‘order
statistics’’. We employed this estimation method because
it will achieve high accuracy in calculating cumulative
probabilities, and its use was recommended by Gumbel
[20]. Thus, for the largest difference between adjacent CT

values in each CT value profile, x, the estimated

cumulative probability function F
^

xð Þ was derived as

follows.
The 40 largest differences between adjacent CT values

on each polymer tube image were arranged in ascending

order: x 1ð Þƒx 2ð Þƒ:::ƒx 40ð Þ. Then, F
^

x ið Þ
� �

was computed

as:

F
^

x ið Þ
� �

~
i

nz1
, for i~1,:::,n ð4Þ

where n is a sampling size (in this study, n540). To
determine which of the three types of generalized

extreme value distribution is the most appropriate model

for the data considered in this study, we plotted the

estimated cumulative probability function against the

largest difference between adjacent CT values following

the Gumbel, Frechet and Weibull plots, respectively. If

the estimated cumulative probability function is reason-

ably representative of the generalized extreme value
distribution, those plots will be linear.

Figure 2. Plot of estimated cumulative probability function versus the largest difference between adjacent CT values for data
given in Table 1. (a) Gumbel plot. Straight line represents line fitted to data (r50.992). (b) Frechet plot. Curved line represents
quadratic polynomial fitted to data (r50.992). Broken straight line represents linear polynomial fitted to data (r50.975). (c)
Weibull plot. Curved line represents quadratic polynomial fitted to data (r50.991). Broken straight line represents linear
polynomial fitted to data (r50.966).
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When the fitting line for the Gumbel plot is expressed
as ax+b, the scale parameter c and the location parameter
b are given by c51/a and b5cb, because

�ln �ln F xð Þ½ �f g~ 1

c
x�b

c
ð5Þ

In this study, we estimated the Gumbel distribution
from the parameters a and b, obtained by line-fitting on
the Gumbel plot. Furthermore, we propose to employ the
location and the scale parameters of the Gumbel
probability density distribution as the feature indices in
the Gumbel evaluation method. As stated above, those
indices can be estimated from the parameters a and b.

Results

The relationship between the largest difference
between adjacent CT values and its estimated cumula-
tive probability in Figure 1c is shown in Table 1, whereas
Figure 2a–c shows the Gumbel, Frechet and Weibull
plots for this relationship, respectively. In the Gumbel
plot, the largest differences between adjacent CT values
were distributed linearly. Conversely, the Frechet and
Weibull plots showed a slight departure from linearity,
making a Gumbel distribution the most suitable for the
largest difference between adjacent CT values in each CT
value profile. Similar results were also obtained for other
data on the polymer tube images. Therefore, for a
statistical model of the largest difference between
adjacent CT values in each CT value profile, we adopt
a Gumbel distribution, and propose to evaluate the
streak artefacts on CT images using the largest difference
between adjacent CT values and its Gumbel distribution.
Hereafter, we refer to this as the ‘‘Gumbel evaluation
method’’.

Figure 3 shows the Gumbel plot of the estimated
cumulative probability function versus the largest
difference between adjacent CT values on each polymer
tube image shown in Figure 1a. The gradients of the

fitted lines for their Gumbel plots of the images of
polymer tubes I and IV were smaller than those of the
images of polymer tubes II and III.

The relationship between the streak artefacts and the
reconstruction algorithms was investigated quantitatively
by the Gumbel evaluation method for the images of
polymer tubes I and IV in Figure 1a. It was shown that the
streak artefacts on the images of the polymer tubes in the
CT slice of the upper zone of the chest phantom varied
dramatically, depending on the reconstruction algorithms
(Figure 4). Furthermore, the Gumbel probability density
distribution indicated this even more clearly (Figure 5).

Figure 3. Gumbel plot of estimated cumulative probability
function versus largest difference between adjacent CT
values for data on images of polymer tubes I, II, III and IV
shown in Figure 1a. Images were reconstructed using the
FC52 reconstruction kernel.

Figure 4. Gumbel plots of estimated cumulative probability
function versus largest difference between adjacent CT
values for data on images of polymer tubes I and IV in
Figure 1a, as reconstructed by reconstruction kernels FC01,
FC50 and FC52. White circles represent data on polymer tube
I, reconstructed by the FC52 reconstruction kernel; black
circles on polymer tube IV reconstructed by FC52; white
squares on polymer tube I reconstructed by FC50; black
squares on polymer tube IV reconstructed by FC50; white
triangles on polymer tube I reconstructed by FC01; and black
triangles on polymer tube IV reconstructed by FC01.

Figure 5. Gumbel probability density distributions esti-
mated from Gumbel plots shown in Figure 4. These distribu-
tions are for data on polymer tube I and IV images, as
reconstructed by kernels FC01, FC50 and FC52. The solid line
represents the Gumbel probability density distribution
obtained from data on the polymer tube I image, and the
broken line from data on the polymer tube IV image.
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The streak artefacts and their variations on the images of
the polymer tubes reconstructed by the FC01 kernel were
small compared with the other kernels, whereas the streak
artefacts by the FC52 kernel and their variations were large.

Figure 6 shows the result of evaluating the streak artefacts
on the polymer tube images in each CT slice by the feature
indices using the Gumbel evaluation method. Both the
location parameter and the scale parameter of the Gumbel
probability density distribution estimated for the largest
difference between adjacent CT values in each CT value
profile were larger on CT slices in which the shoulder, bone
or liver was included than on other slices. These results were
consistent with the subjective recognition of the streak
artefacts on the CT images with a display window width of
2500 HU and a level of 2600 HU (Figure 7).

Discussion

We have shown that the largest difference between
adjacent CT values in each CT value profile on the polymer
tube image can be statistically modeled by a Gumbel
distribution and, based on this result, we have devised a
new method of evaluating the streak artefacts on CT
images that we call the ‘‘Gumbel evaluation method’’.
Using that method, the streak artefacts on the polymer
tube image on CT slices in which the shoulder bone or liver
was included were shown to be larger than those from
other slices. Several studies have shown that streak
artefacts often occur on the CT images, causing a major
difference in attenuation with the rotational position of the
X-ray tube [8, 9]. In this study, such situations correspond
to the tube images near the shoulder or the liver, thus
demonstrating that the results of analysing streak artefacts
by our new method are reasonable.

The statistical analysis was performed for the largest
difference between adjacent values in each CT value
profile. These data can be considered equivalent to the
image data processed by a one-dimensional difference
operator [21]. Therefore, neglecting the residual compo-
nent of the noise-free image, these data would be

equivalent to the noise component of the original CT
image [21], and their values would be expected to be
large at the positions of streak artefacts.

Streak artefacts have an undeniably detrimental effect
on the diagnostic performance of radiologists and compu-
ter-aided diagnostic systems. Additionally, such artefacts
on CT images are empirically known to increase as the
radiation dose decreases [6, 7]. Thus, the evaluation of
streak artefacts is important in solving the problem of
estimating lower limits for dose while maintaining
satisfactory diagnostic performance. Although the streak
artefacts on CT images can be considered to follow some
underlying rules, they are still unknown as an analytic
form as far as we know. Thus, the Gumbel evaluation
method is expected to prove useful in determining the
most appropriate reduction in the radiation dosage.

Our method gives a local assessment of the level of
streak artefacts at a given location and in a selected
direction, i.e. it is a direction-dependent method.
However, an ideal method for evaluating streak artefacts
should be independent of direction. This problem
deserves further consideration.

More recently, many studies have been conducted on
CT screening using an MDCT scanner with automatic
tube-current modulation [22, 23]. This technique enables
automatic adjustment of the tube current according to
the size and attenuation characteristics of the body part
being scanned, increasing the tube current for the highest
attenuation projection direction and reducing it for a low
attenuation direction. One of the aims of this technique is
to reduce streak artefacts. However, the reductions seen
in streak artefacts have not been clarified. Therefore, the
Gumbel evaluation method can be used to quantitatively
assess how well this system works.

Conclusions

We have demonstrated that the largest difference
between adjacent CT values in each CT value profile on
a polymer tube image can be statistically modelled by a

Figure 6. (a) Relationship of the location parameter of the Gumbel probability density distribution estimated for the largest
difference between adjacent CT values in each CT value profile and CT slice position. (b) Relationship between the scale
parameter of the Gumbel distribution and CT slice position. Here, distance is from the top of the lung field in the chest phantom.
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Gumbel distribution and, based on that result, we have
devised a new method of evaluating streak artefacts on CT
images that we call the ‘‘Gumbel evaluation method’’.
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