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Abstract: The efficacy of thrombolysis is inversely correlated with thrombus age. During early
thrombogenesis, activated factor XIII (FXIIIa) cross-links α2-AP to fibrin to protect it from early lysis.
This was exploited to develop an α2-AP-based imaging agent to detect early clot formation likely
susceptible to thrombolysis treatment. In this study, this imaging probe was improved and validated
using 111In SPECT/CT in a mouse thrombosis model. In vitro fluorescent- and 111In-labelled imaging
probe-to-fibrin cross-linking assays were performed. Thrombus formation was induced in C57Bl/6
mice by endothelial damage (FeCl3) or by ligation (stenosis) of the infrarenal vena cava (IVC). Two
or six hours post-surgery, mice were injected with 111In-DTPA-A16 and ExiTron Nano 12000, and
binding of the imaging tracer to thrombi was assessed by SPECT/CT. Subsequently, ex vivo IVCs
were subjected to autoradiography and histochemical analysis for platelets and fibrin. Efficient in
vitro cross-linking of A16 imaging probe to fibrin was obtained. In vivo IVC thrombosis models
yielded stable platelet-rich thrombi with FeCl3 and fibrin and red cell-rich thrombi with stenosis.
In the stenosis model, clot formation in the vena cava corresponded with a SPECT hotspot using an
A16 imaging probe as a molecular tracer. The fibrin-targeting A16 probe showed specific binding
to mouse thrombi in in vitro assays and the in vivo DVT model. The use of specific and covalent
fibrin-binding probes might enable the clinical non-invasive imaging of early and active thrombosis.

Keywords: thrombosis; fibrin; molecular imaging; SPECT; thrombolysis

1. Introduction

With a globally aging population, the lifetime risk of thrombo-embolic and ischemic
diseases is increasing [1–3]. Survival rates after thrombo-embolic disease, such as pul-
monary embolism (PE) but also ischemic stroke and myocardial infarction, are inversely
correlated with time to treatment. Therefore, it is important to diagnose these diseases
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early after onset. Fibrinolytic therapy (lysis) is the first line of treatment for these ischemic
diseases. Still, resistance to lysis increases with thrombus age, while the hazard of severe
side effects such as gastrointestinal bleeding or intracerebral haemorrhage remains [4–6].
The first hours after thrombus formation is the timeframe in which thrombolytic treatment
with tissue plasminogen activator (tPA) is indicated for PE, ischemic stroke and ST-segment
elevation myocardial infarction (STEMI), as well as other thrombosis-related off-label indi-
cations. Therefore, diagnosing early thrombus formation will aid in selecting patients that
will benefit from fibrinolytic therapy.

Current clinical prediction tools are indirect and based on changes in anatomy or
function, whereby diagnostic strategies include D-dimer testing, ventilation-perfusion (VQ)
scanning, or computed tomography pulmonary angiography (CTPA) [7]. Other diagnostic
tools used are ultrasound, X-ray, CT, or MRI, which are all based on structural changes
or the cessation of blood flow rather than the molecular composition of thrombi. The
development and improvement of molecular imaging techniques are essential to visualise
thrombi at an early stage, enable whole-body or multisite imaging, improve diagnostic
specificity and sensitivity, and monitor clinical outcomes [7–10].

Fibrin has been a target of interest in developing thrombus imaging agents, as fibrin
deposition plays a central role in both arterial and venous thrombosis [11,12]. Fibrin
is minimally present in the circulation under physiological conditions. However, the
precursor fibrinogen is present at 4 mg/mL concentrations. Upon activation, fibrin is
formed rapidly and is the ultimate target of thrombolytic enzymes used to treat the clinical
presentations associated with thromboembolic diseases, making fibrin a suitable target
for molecular imaging [12]. Over the last years, various fibrin-targeting probes have been
developed for the imaging modalities SPECT, PET, MRI, and optical imaging [9,13–22].
Most of these peptide-based probes are small and can consequently penetrate easily into
thrombi. They are easy to synthesize, are less likely to be immunogenic, and have a rapid
clearance from the blood [23]. Several peptidic probes based on α2-antiplasmin (α2-AP) rely
on the transglutaminase activity of factor XIIIa (FXIIIa) for [24,25], leading to the covalent
cross-linking of the probes to fibrin during early-phase thrombin formation [26,27]. It
appeared that α2-AP-based probes not only enable in vitro and in vivo visualisation of
thrombi but also the distinction between new and older thrombi, which could facilitate the
selection of patients that would benefit most from thrombolytic therapy [25,28].

This proof-of-concept study aimed to develop an optimized α2-AP-based nuclear
imaging probe by increasing the hydrophilicity and fibrin-binding potential of our pre-
vious bimodal α2-AP-based contrast agent (bi-α2-AP-CA) [25]. Therefore, in the new
probe A16, tryptophan-14 was replaced by β-alanine-lysine-lysine and conjugated to di-
ethylenetriamine pentaacetic acid (DTPA) for labelling with indium-111 (111In) or Lissamine
rhodamine-B via lysine-13. Substitution of glutamine-3 to an alanine residue resulted in
the control probe control-A16 that cannot be coupled to fibrin by FXIIIa.

Here, the performance of this new α2-AP-based probe was first assessed in an in vitro
plasma clotting assay using the rhodamine- and 111In-labelled variant. Then, immunohisto-
chemistry compared two different mice deep venous thrombosis (DVT) models for their
fibrin composition. The two models include the previously used ferric chloride model and
a stenosis model, induced in the infrarenal vena cava (IVC), where endothelial damage
by ferric chloride is a model for a more rapid, non-DVT-like platelet-rich thrombosis, and
the stenosis model represents DVT [29]. The IVC stenosis model was used to assess the
potential of the 111In-labelled tracer in SPECT/CT. Finally, the biodistribution of the nuclear
imaging tracer was determined, and ex vivo scans of IVCs were made.

2. Materials and Methods
2.1. Peptide Synthesis and Radiolabelling

The bimodal peptides bi-α2-AP-CA and control-bi-CA were synthesized using tert-
butyloxycarbonyl solid-phase peptide synthesis [30] as described by Miserus et al. [25].
A16 and control-A16 were synthesized and conjugated with either DTPA or Lissamine
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rhodamine-B (LisB) by Fmoc-based solid-phase peptide synthesis using standard proto-
cols [31]. 111In-A16 and 111In-control-A16 were prepared by adding 50–60 MBq 111InCl3
(Mallinckrodt, Petten B.V., The Netherlands) to 10 µg of DPTA-conjugated A16 (4.6 nmol)
or control-A16 (4.7 nmol), dissolved in 200–300 µL of 0.1 M 2-(N-morpholino)ethane sul-
fonic acid (MES) buffer of pH 5.5. Radiolabelling was performed for 20 min at room
temperature. Radiochemical purity was determined by RP-HPLC (LC-20AT, Shimadzu
Benelux, ‘s-Hertogenbosch, The Netherlands) using a C18 column (RP-C18 Inertsil ODS-3,
4.6 × 250 mm, 5 µM, Phenomenex, Utrecht, The Netherlands) eluted with a linear gradient
of CH3CN (0–100% in 30 min) in H2O containing 0.1% trifluoroacetic acid (TFA; v/v) at a
flow rate of 1 mL/min. The radioactivity was monitored using an in-line radio detector
(Gabi, Raytest GmbH, Straubenhardt, Germany). The radiochemical purity of the prepara-
tions used in in vitro and in vivo experiments always exceeded 95%. Radiotracers were
used without further purification. The 111In was preferred over other radionuclides (e.g.,
99mTc) because the complex of 111In and DTPA is more stable in plasma [32].

2.2. In Vitro Probe Validation

Human blood was collected from healthy volunteers by venipuncture using a vacu-
tainer tube containing trisodium citrate after signing informed consent (Helsinki decla-
ration). Thrombi (50 µL plasma) were allowed to form for 90 min at 37 °C with shaking
in the presence of 14 mM CaCl2 and 0.6 nM TF and subsequently incubated with 3 µM
bi-α2-AP-CA, control-bi-CA, LisB-A16 or LisB-control-A16. At the indicated time points,
the OD570 of the supernatant was measured. Mouse blood was collected through a tail vein
puncture, and plasma from 6 mice was pooled. Human and mouse thrombi were allowed
to form as described above and subsequently incubated with 100 µL or 16 ng/µL 111In-A16
or 111In-control-A16. After 30, 60 and 180 min, the thrombi were washed twice with 1 mL
PBS, and the amount of tracer uptake in the thrombi was calculated using gamma counting
(Wallac Wizard, Turku, Finland). Data were expressed as the percentage of tracer uptake in
the thrombi to the total amount of tracer added.

2.3. Animals

C57BL/6 male mice (8–12 weeks old, Charles River, The Netherlands) were used for all
in vivo experiments. Animal experimental procedures were approved by the Institutional
Animal Care and Use Committee of Maastricht University (Nr. 2013-076, 10 June 2014). All
protocols were carried out in compliance with the Dutch government guidelines and the
guidelines from Directive 2010/63/EU of the European Parliament on the protection of
animals used for scientific purposes.

2.4. Ferric Chloride Thrombosis Model

The ferric chloride thrombosis model was performed analogously as described by
Wang and colleagues [33]. Briefly, C57BL/6 male mice were anaesthetized using 3–5%
isoflurane (IsoFlow, Zoetis B.V., Rotterdam, The Netherlands) and 0.05 mg/kg fentanyl (Eli
Lilly, Indianapolis, IN, USA) subcutaneously (s.c.), and received a median laparotomy. The
IVC was exposed, and a piece of filter paper soaked in a 10% FeCl3 solution in distilled
water was placed just under the left renal vein for 5 min. After removal and washing with
0.9% NaCl, the incision was closed using a 7-0 prolene suture (Ethicon, Johnson & Johnson
Medical N.V., Diegem, Belgium). The mice received 0.05 mg/kg buprenorphine s.c. before
waking and at regular intervals until the end of the experiment. Sham surgery involved
exposing the IVC and placing a filter paper soaked in sterile water.

2.5. Ivc Stenosis Thrombosis Model

The model was performed as described previously by von Brühl and colleagues [11].
Briefly, C57BL/6 male mice were anaesthetized using 3–5% isoflurane and 0.05 mg/kg
fentanyl s.c. and received a median laparotomy. The IVC was exposed, and a ligation was
placed around the IVC, and a 0.014 inch space holder was placed just below the left renal
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vein using an 8-0 prolene monofilament suture (Ethicon). The space holder was removed
to avoid complete vessel occlusion, and the incision was closed. Mice received 0.05 mg/kg
buprenorphine s.c. before waking and at regular intervals until the end of the experiment.
Sham surgery involved exposing the IVC and placing a filament without ligation.

2.6. Computed Tomography (CT)

Animals received 100 µL ExiTron Nano 12,000 intravenously (i.v.; Viscover, Berlin,
Germany) through a tail vein injection and were subsequently anaesthetized using 3–5%
isoflurane (Zoetis). Cone beam computer tomography (CBCT) scanning was performed
using a micro CT (Xrad 225Cx, Precision X-ray, USA) and accompanying PilotCal software
at 80 kVp.

2.7. Single-Photon Emission Computed Tomography (SPECT)

Six hours after induction of thrombosis, 13.2 ± 0.4 MBq 111In-A16 (4.1 µg) was admin-
istered through a tail vein cannula. Mice were anaesthetized with 3–5% isoflurane and
positioned in the SPECT camera (U-SPECT, VECTor, acquisition version 3.7ds, MiLabs,
Utrecht, The Netherlands). A whole-body SPECT (4 × 15 min) was performed using a
0.6 mm collimator, after which the animal was placed in the micro CT (Xrad 225Cx, Preci-
sion X-ray, Madison, CT, USA). CT imaging was performed as described above. To facilitate
co-registration of SPECT/CT images, external markers on the animal beds containing
111In and ExiTron Nano 12,000 were used. Rigid co-registration was manually performed
with PMOD image fusion (Bruker, Billerica, MA, USA). After SPECT/CT, animals were
dissected, and ex vivo scans were made of the IVCs. Therefore, after gamma counting (as
described below), the IVCs were imbedded in 2% agarose gel and scanned for 4 × 1 h.

2.8. Biodistribution

After SPECT/CT scanning, animals were euthanized, and major organs and tissues
were collected, weighed, and counted in an automated NaI(TI) gamma counter (Wallac
Wizard, Turku, Finland). Data are expressed as the percentage of injected dose (ID) per
gram of tissue (%ID/g).

2.9. Histology

The complete V. cava and aorta were fixed for 48 h in 4% formalin, dehydrated and
embedded in paraffin. Sequential sections of 5 µM were cut using a sliding microtome.
After deparaffinisation and rehydration, sections were stained with haematoxylin and eosin
(HE) (Klinipath, Duiven, The Netherlands), or Carstairs’ method for fibrin and platelets
(EMS 26381), which stains fibrin (bright red), platelets (grey-blue), collagen (bright blue)
and red blood cells (yellow). Images were taken using a light microscope (Leica DM RBE
and a DFC425C camera) and analysed using ImageJ (U. S. National Institutes of Health,
Bethesda, MD, USA).

3. Results
3.1. Peptide Synthesis

Structure formulas of bi-α2-AP-CA, DTPA-A16 (Ac-GNQEQVSPLTLLK1-K(DTPA)K-
NH2, 1 = βAla), and their Q3A counterparts, which served as controls, are given in
Figure 1A,B, respectively. Matrix-assisted laser desorption ionization mass spectrometry of
bi-α2-AP-CA (Figure 1C) and A16 (Figure 1D) showed a mass of 2832.86 and 2170.89 Da,
which corresponded to the calculated masses of 2832.92 and 2170.15 Da, respectively. In
the mass spectrum of bi-α2-AP-CA, a small peak is visible at 2169.85 Da, representing the
loss of maleimide-DTPA. The mass spectrum of A16 demonstrated a small extra peak at
2224.80 Da, representing chelated Fe3+. The structure of the red fluorescent probe LisB-A16
(Ac-GNQEQVSPLTLLK1-K(LisB)K-NH2, 1 = βAla) for initial in vitro testing is given in
Supplemental Figure S1 (see Supporting Information).
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Figure 1. Schematic representations of the previously developed bi-α2-AP-CA (A, modified from [25]),
and the optimized probe A16 (B), which is conjugated to the chelator DTPA (blue), enabling labelling
with 111In. Substitution of glutamine to alanine (Q3→A3) leads to a control probe (control-bi-CA or
control-A16, respectively), which does not bind to fibrin (C,D). Mass spectra of bi-α2-AP-CA and
A16, respectively, showing a mass of 2832.86 and 2170.89 (calculated masses: 2832.92 and 2170.15).

3.2. In Vitro Probe Incorporation

LisB-A16 was compared with bi-α2-AP-CA. Human plasma was allowed to clot for
90 min at 37 °C, after which a 3 µM probe was added. The decrease in probe left in the
solution was measured by colourimetry and represented probe incorporation into the
human thrombi (Figure 2A). The absorption at 570 nm remained close to 100% for the
Q3A control probes (dotted lines) and reduced to approx. 67% for bi-α2-AP-CA (solid
red line) compared to 53% for LisB-A16 (solid green line), demonstrating an absence of
incorporation of the controls and suggesting more effective incorporation of LisB-A16 than
bi-α2-AP-CA. At a higher probe concentration (15 µM), the remaining probe in solution
was 84% (bi-α2-AP-CA) and 61% (LisB-A16; Supplementary Figure S2, see Supporting
Information). Representative images of thrombi incubated with LisB-control-A16 and
LisB-A16 clearly showed that LisB-A16 accumulated in the fibrin clot in contrast to LisB-
control-A16 (Figure 2B).



Biomolecules 2022, 12, 829 6 of 13

Figure 2. In vitro probe depletion. Human plasma was allowed to form thrombi in vitro at 37 °C for
90 min. (A) Rhodamine-labelled probes (3 µM) were added to human thrombi. Solid lines = peptides
(Q3), dashed lines = control peptides (Q3→A3), parent peptide (�,#), newly developed A16 (�, ).
OD (570 nm) in solution was measured after 1, 2, 3 and 4 h as a measure of probe incorporation in
thrombi. Dots represent mean± SD, n = 4. (B) Representative uptake of LisB-A16 vs control-LisB-A16
in thrombi.

Subsequently, the incorporation of 111In-labelled A16 and control-A16 were tested in
vitro both in human and mouse thrombi to verify the uptake of tracer into mouse thrombi
before evaluating the probes in a mouse DVT model. The RP-HPLC elution profiles of
111In-A16 and 111In-control-A16 showed a single peak for both compounds with elution
times of 12.7 and 14.9 min for 111In-A16 and 111In-control-A16, respectively (Supplementary
Figure S3, see Supporting Information). 111In-A16 was added to human and mouse plasma
that had been allowed to clot for 90 min. After 0.5, 1 or 3 h, thrombi were washed, and the
amount of tracer uptake was measured using gamma counting. After 3 h, approximately
50% of the tracer was taken up by both the mouse (approx. 55%) and human (approx. 45%)
thrombi, while about 25% of control-A16 was incorporated (Figure 3).

Figure 3. 111In-labelled tracers (A16—solid line, control-A16—dotted line) were added to human
(�, ) and mouse (�,#) thrombi. At indicated time points, thrombi were washed, and the amount of
tracer uptake was measured in a gamma counter.
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3.3. Validation of Mouse DVT Models

To test the new probe in vivo, two different DVT C57BL/6 mouse models were used.
The rapid IVC FeCl3 model was compared to the IVC stenosis model because the cellular
composition and fibrin content are different in the resulting thrombi [11,34]. Prior to testing
the tracer, the models were validated at different time points using CBCT scanning with a
single i.v. bolus injection of the contrast agent ExiTron Nano 12000. Representative images
are shown in Figure 4, showing an intact V. cava in the mouse receiving sham surgery (A), a
lack of contrast on the apical side of the V. cava in the mouse that received FeCl3 treatment,
indicating thrombus formation (B), and a clear negative contrast throughout the V. cava and
the location of ligation, indicating an occlusive thrombus in the IVC stenosis model (C).

Figure 4. Evaluation of mouse DVT models by contrast-enhanced CT in a sham-operated mouse (A),
6 h after endothelial damage with FeCl3 (B) and 24 h after flow restriction by partial ligation (C). The
dashed line shows the IVC in the abdominal cavity. Arrowheads point to lack of intravenous contrast,
indicating thrombus formation.

After CBCT scanning, mice were dissected in order to validate the formation of a
thrombus and for the preparation of histologic specimens. Using FeCl3, all of the mice
experienced rapid thrombosis (n = 2, 2 h, n = 2, 6 h, n = 4, 24 h), with highly variable size,
as has been described before [34]. Due to this variable size, only 3 out of 8 thrombi were
visible in CBCT scanning. Since the indication of thrombosis is based on the absence of i.v.
contrast, small or superficial thrombi were not detectable. In the IVC stenosis model, 13
out of 15 mice developed thrombosis (n = 5/6 6 h, n = 4/4 24 h, n = 4/5 48 h), with lower
variability in thrombus size than reported [34]. Thrombus specimens were stained using
haematoxylin/eosin staining (Figure 5A,C) and Carstairs’ method for fibrin and platelets
(Figure 5B,D,E). FeCl3-induced thrombi were rich in platelets (Figure 5A,B), whereas the
IVC stenosis showed a higher content of fibrin and red blood cells (Figure 5C,D). Sagittal
sectioning showed a clear, typical layered pattern of platelets, fibrin and red blood cells of
the thrombus (Figure 5E), as observed previously [11].
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Figure 5. Representative images of transversal slices (A–D) or sagittal slices (E) through thrombi
(th) and aorta (ao) induced by FeCl3 (A,B) or IVC ligation (C–E). Slices were stained with H&E
(A,C) or Carstairs’ method for fibrin and platelets (B,D,E), which stains fibrin (bright red), platelets
(grey-blue), collagen (bright blue) and red blood cells (yellow). Scale bar = 100 µM.

3.4. In Vivo Thrombus Imaging in Vena Cava

As the imaging probe is based on α2-AP and will bind covalently to fibrin, we hypoth-
esized that the tracer uptake would be higher in the IVC stenosis model since the thrombi
contain more fibrin than in the FeCl3 model. In addition, a previous study demonstrated
that stasis-induced thrombi were rich in α2-AP in mice and that α2-AP was a strong deter-
minant of thrombus size, indicating an important role of the fibrinolytic pathway in mouse
thrombosis [35]. As proof of concept, we imaged uptake of 111In-A16 in a C57BL/6 mouse
six hours after IVC ligation and in sham-operated mice. Therefore, mice were injected with
13.2± 0.4 MBq tracer (200 µg/kg body weight) and immediately scanned using SPECT/CT.
Figure 6A–D shows representative sections of sagittal (A) and coronal (B) views and a 3D
model (C) of a mouse. High uptake was visible in the kidneys and bladder, indicating
predominant renal clearance of the tracer. A small droplet of urine is seen at the base of
the tail. Asterisks (*) indicate the location of the IVC ligation, where a hyperintense signal
indicates uptake of the tracer at the location of the thrombus. Biodistribution studies of
the tracer showed high uptake in V. cava and kidneys, indicating uptake of the tracer in
the thrombus and renal clearance (Figure 6E). Ex vivo SPECT scans of paraffin-embedded
IVCs clearly showed high 111In-A16 uptake in the IVC of a mouse that received ligation
(Figure 6E, top) compared to a mouse that received sham surgery (bottom), indicating that a
thrombus is present in the IVC for tracer uptake. Figure 6F shows pictures of the embedded
thrombi used for ex vivo scanning. However, in most of our experiments, including mice
treated with FeCl3, whole-body SPECT did not show uptake of the tracer in vivo, but
ex vivo scans of the IVCs with thrombi did reveal uptake of the tracer (Supplementary
Figure S4, see Supporting Information).



Biomolecules 2022, 12, 829 9 of 13

Figure 6. Representative SPECT/CT overlays of sagittal (A) and coronal (B) views, and a 3D model
(C) of a mouse 6 hr after IVC ligation, injected with 111In-A16. High uptake of the tracer is seen in
kidneys (k), bladder (b) and thrombus (*). (D) Accompanying biodistribution of this mouse showing
high uptake in the V. cava and kidneys, expressed as percentage injected dose per gram tissue (%ID/g).
(E) Ex vivo SPECT scan of the thrombus (top dotted line). The lower dotted line outlines the IVC of a
sham-surgery mouse injected with 111In-A16. (F) Light image of embedded thrombi.

4. Discussion

Since cardiovascular disease (CVD) causes major morbidity and mortality worldwide,
there is a constant need for the improvement of diagnostic procedures. In this study, we
designed and developed an optimized α2-AP-based molecular imaging probe, A16, which
is covalently bound to fibrin by FXIIIa during thrombosis. This imaging agent enables
molecular imaging of active and early thrombotic processes and is therefore attractive
for clinical translation. In in vitro human plasma clot formation assay LisB-labelled A16
demonstrated higher uptake in these plasma clots than bi-α2AP-CA, which could be
explained by increased hydrophilicity due to the replacement of tryptophan-14 in bi-
α2AP-CA by the tripeptide sequence β-alanine-lysine-lysine in A16. However, the overall
increase in hydrophilicity cannot be determined because LisB-A16 lacks the hydrophilic
DTPA moiety present in the bimodal bi-α2AP-CA.

This study aimed to further develop our optical imaging tracer into a radionuclide-
based tracer, enabling visualization of lesions deeper in tissues and organs. Therefore,
DTPA-conjugated A16 was synthesized and radiolabelled with 111In. In in vitro assays,
111In-A16 showed faster uptake in mice compared to human thrombi. This observation
could be explained by the overall higher activity of coagulation enzymes present in mouse
plasma, as reported previously [36]. The role of Q3 in the covalent coupling of A16 to
fibrin was confirmed by a significantly lower uptake of 111In-control-A16 in thrombi of
both species. Before investigating the in vivo thrombus-targeting potential of the newly
developed radiotracer, two mouse DVT models were compared in terms of cellular and
fibrin composition by CT and IHC. The FeCl3 endothelial injury model resulted in more
platelet-rich thrombi, whereas the stenosis model showed a typically layered pattern of
white and red thrombi, which is in line with previous research [11,34,37,38]. Thrombi
obtained from the stenosis model showed a higher fibrin content, and the thrombus size
was more stable than the frequently used FeCl3 model. Furthermore, this model showed
structural features similar to human venous thrombosis [11]. As the stenosis model is
more in line with the clinical situation and the thrombi formed were demonstrated to
possess a higher fibrin content, we decided to evaluate 111In-A16 in the stenosis model only.
111In-A16 showed high uptake in the V. cava with thrombus and cleared rapidly from the
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blood via the kidneys. Uptake in non-target organs and tissues such as muscle was low,
demonstrating the specificity of 111In-A16.

The advantage of radionuclide-based imaging techniques like PET and SPECT is their
sensitivity to nano- and even picomolar tracer concentrations. Indeed, the dose used in
the SPECT experiments (0.1 µmol/kg) was over 40 times lower than the dose previously
used for the gadolinium-labelled MRI α2-AP based probe (5 µmol/kg) [25], reducing
the potential for pharmacological effects and toxicity [9]. Although ex vivo scanning of
the V. cava showed uptake of 111In-A16 in mouse thrombi, the in vivo thrombus could
not be visualized in all SPECT experiments. Possible explanations include the limited
spatial resolution of the µSPECT used. In the setup used, with a 0.6-mm pinhole collimator,
submillimetre resolution was the maximum achievable resolution [39]. Performance of
the SPECT is dependent on multiple factors, including reconstruction algorithms and the
type of isotope used. Due to the relatively high energy of 111In-emitted photons leading
to increased collimator scatter, 111In is among the more challenging isotopes to obtain
SPECT images [40,41], yet 111In-DTPA shows robust stability in plasma [32]. Furthermore,
thrombi were induced directly between the highly radioactive kidneys and bladder, which
all together could lead to failure to detect the thrombus in vivo while uptake of the tracer
was clearly observed ex vivo. In addition, a possible disadvantage of the stenosis model
is that injected compounds are unable to reach the thrombus once occlusion of the vein
has occurred, which may affect signal intensity [38]. As 111In-A16 is covalently bound
to fibrin during thrombus formation, and the half-life of 111In is 2.8 days, it would be
interesting to see if tracer imaging is improved if A16 is injected after thrombus induction
and imaged several hours or one day later, even though this setup steers away from the
clinical setting. To overcome scattering issues from the bladder and kidneys, imaging of
thrombus formation in the femoral or saphenous vein would be more conducive [42]. Since
an important property of the probe is its covalent binding to the thrombus, it is of great
importance to test the pharmacodynamic interaction with thrombolytic agents, e.g., tissue
plasminogen activator. In addition, dose optimization is crucial during future follow-up
studies.

It is important to note that the results obtained in mouse models may not be optimally
translatable to humans. Despite the wide range of choices of mouse models for thrombosis, every
model only covers a particular pathophysiologic aspect of clinical thrombosis in humans [34,38].
This is also highlighted in this study, where FeCl3-induced thrombi were found to be rich
in platelets, and the stenosis-induced thrombi rather contained fibrin. Thus, the choice
of mouse model determines the outcome, which should be kept in mind when drawing
conclusions about clinical implications. Since mice have a larger metabolic rate [38] and
a higher activity of anticoagulant factors [36], thrombin generation and fibrinolysis will
likely be different compared to humans. In this study, the choice was made for the stenosis-
induced thrombosis model because the thrombi obtained are fibrin-rich. Moreover, the
fibrinolytic system was shown to be important in stasis-induced thrombosis in a recent
mouse study [35]. Genetic deletion of α2-AP resulted in a significant reduction of thrombus
size, indicating a prominent role of fibrinolysis and α2-AP in stasis-induced thrombosis.
This is also reflected by the detection of 111In-DTPA-A16 incorporation in the mouse thrombus.
In human acute thrombotic events, aberrant blood flow may not always play a decisive role in
disease etiology. While abnormal flow might be a prominent contributor to deep vein thrombosis,
acute ischemic stroke might rather be caused by cardiogenic emboli as a complication of atrial
fibrillation or driven by massive platelet aggregation due to the rupture of carotid lesions.
Thus, it is not known whether A16 binds to all thrombi, and it might be worthwhile to target
activated platelets for molecular imaging in combination with fibrin-binding probes to cover a
broader spectrum of thrombotic manifestations. Indeed, imaging agents directed against the
high-affinity conformation of the fibrinogen-binding integrin α2bβ3 are being developed for
in vivo detection of platelet aggregation [10,43]. Taken together, it remains to be determined
whether A16 can be used for diagnosis in patients.
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In conclusion, this study showed a viable new SPECT imaging tracer targeting active
thrombus formation through FXIIIa activity. Using a single approach, it harbours the
potential to diagnose thrombosis and might be implemented to predict the outcome of
thrombolytic therapy. This proof-of-concept study is a step toward the development of
an α2-AP-based imaging probe that opens up the potential for clinical imaging of active
thrombotic processes.
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Author Contributions: Conceptualization, R.R.K., I.D. and T.M.H.; methodology, S.J.v.H. and S.M.;
validation, P.V.d.V., P.T. and S.L.G.D.T.; formal analysis, A.D.; investigation, N.B., A.D., P.V.d.V., P.T.
and S.L.G.D.T.; resources, F.V., S.M. and P.T.; data curation, A.D., R.R.K. and I.D.; writing—original
draft preparation, A.D.; writing—review and editing, R.R.K., I.D. and T.M.H.; visualization, A.D.;
supervision, R.R.K., I.D. and T.M.H.; funding acquisition, R.R.K., I.D. and T.M.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was in part supported by the Landsteiner Foundation for Blood Transfusion
Research (LSBR Nr. 1638) awarded to R.R.K., the Netherlands Organization for Scientific Research
(NWO) Grants VIDI 723.013.009, VIDI 016.126.358 (to R.R.K.), and Aspasia 0.15.010.005 (to I.D.).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Maastricht University for studies
involving humans. Animal experimental procedures were approved by the Institutional Animal Care
and Use Committee of Maastricht University (Nr. 2013-076, 10 June 2014), and all protocols were
carried out in compliance with the Dutch government guidelines and the guidelines from Directive
2010/63/EU of the European Parliament on the protection of animals used for scientific purposes.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Source data can be obtained from the corresponding author on reason-
able request.

Acknowledgments: The graphical abstract of this article was prepared using elements from the
Servier Medical Art Server (http://smart.servier.com, accessed on 16 May 2022).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

References
1. Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.;

Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation
2020, 141, e139–e596. [CrossRef] [PubMed]

2. Katan, M.; Luft, A. Global Burden of Stroke. Semin Neurol. 2018, 38, 208–211. [CrossRef] [PubMed]
3. Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.;

et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017:
A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [CrossRef]

4. Fibrinolytic Therapy Trialists’ Collaborative, G. Indications for fibrinolytic therapy in suspected acute myocardial infarction:
Collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients.
Lancet 1994, 343, 311–322. [CrossRef]

5. Reed, G.W.; Rossi, J.E.; Cannon, C.P. Acute myocardial infarction. Lancet 2017, 389, 197–210. [CrossRef]
6. Henderson, S.J.; Weitz, J.I.; Kim, P.Y. Fibrinolysis: Strategies to enhance the treatment of acute ischemic stroke. J. Thromb. Haemost.

2018, 16, 1932–1940. [CrossRef] [PubMed]
7. Lim, W.; Le Gal, G.; Bates, S.M.; Righini, M.; Haramati, L.B.; Lang, E.; Kline, J.A.; Chasteen, S.; Snyder, M.; Patel, P.; et al. American

Society of Hematology 2018 guidelines for management of venous thromboembolism: Diagnosis of venous thromboembolism.
Blood Adv. 2018, 2, 3226–3256. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/biom12060829/s1
https://www.mdpi.com/article/10.3390/biom12060829/s1
http://smart.servier.com
http://doi.org/10.1161/CIR.0000000000000757
http://www.ncbi.nlm.nih.gov/pubmed/31992061
http://dx.doi.org/10.1055/s-0038-1649503
http://www.ncbi.nlm.nih.gov/pubmed/29791947
http://dx.doi.org/10.1016/S0140-6736(18)32203-7
http://dx.doi.org/10.1016/S0140-6736(94)91161-4
http://dx.doi.org/10.1016/S0140-6736(16)30677-8
http://dx.doi.org/10.1111/jth.14215
http://www.ncbi.nlm.nih.gov/pubmed/29953716
http://dx.doi.org/10.1182/bloodadvances.2018024828
http://www.ncbi.nlm.nih.gov/pubmed/30482764


Biomolecules 2022, 12, 829 12 of 13

8. Oliveira, B.L.; Caravan, P. Peptide-based fibrin-targeting probes for thrombus imaging. Dalton Trans. 2017, 46, 14488–14508.
[CrossRef]

9. Blasi, F.; Oliveira, B.L.; Rietz, T.A.; Rotile, N.J.; Naha, P.C.; Cormode, D.P.; Izquierdo-Garcia, D.; Catana, C.; Caravan, P. Multisite
Thrombus Imaging and Fibrin Content Estimation With a Single Whole-Body PET Scan in Rats. Arterioscler. Thromb. Vasc. Biol.
2015, 35, 2114–2121. [CrossRef]

10. Ha, K.; Zheng, X.; Kessinger, C.W.; Mauskapf, A.; Li, W.; Kawamura, Y.; Orii, M.; Hilderbrand, S.A.; Jaffer, F.A.; McCarthy, J.R.
In Vivo Platelet Detection Using a Glycoprotein IIb/IIIa-Targeted Near-Infrared Fluorescence Imaging Probe. ACS Sens. 2021,
6, 2225–2232. [CrossRef]

11. Von Bruhl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.;
Kollnberger, M.; et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in
vivo. J. Exp. Med. 2012, 209, 819–835. [CrossRef] [PubMed]

12. Byrnes, J.R.; Wolberg, A.S. Newly-Recognized Roles of Factor XIII in Thrombosis. Semin. Thromb. Hemost. 2016, 42, 445–454.
[CrossRef] [PubMed]

13. Vymazal, J.; Spuentrup, E.; Cardenas-Molina, G.; Wiethoff, A.J.; Hartmann, M.G.; Caravan, P.; Parsons, E.C., Jr. Thrombus
imaging with fibrin-specific gadolinium-based MR contrast agent EP-2104R: Results of a phase II clinical study of feasibility.
Investig. Radiol. 2009, 44, 697–704. [CrossRef] [PubMed]

14. Botnar, R.M.; Buecker, A.; Wiethoff, A.J.; Parsons, E.C., Jr.; Katoh, M.; Katsimaglis, G.; Weisskoff, R.M.; Lauffer, R.B.; Graham, P.B.;
Gunther, R.W.; et al. In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic
resonance contrast agent. Circulation 2004, 110, 1463–1466. [CrossRef] [PubMed]

15. Flacke, S.; Fischer, S.; Scott, M.J.; Fuhrhop, R.J.; Allen, J.S.; McLean, M.; Winter, P.; Sicard, G.A.; Gaffney, P.J.; Wickline, S.A.;
et al. Novel MRI contrast agent for molecular imaging of fibrin: Implications for detecting vulnerable plaques. Circulation 2001,
104, 1280–1285. [CrossRef]

16. Sirol, M.; Fuster, V.; Badimon, J.J.; Fallon, J.T.; Moreno, P.R.; Toussaint, J.F.; Fayad, Z.A. Chronic thrombus detection with in vivo
magnetic resonance imaging and a fibrin-targeted contrast agent. Circulation 2005, 112, 1594–1600. [CrossRef]

17. Stracke, C.P.; Katoh, M.; Wiethoff, A.J.; Parsons, E.C.; Spangenberg, P.; Spüntrup, E. Molecular MRI of cerebral venous sinus
thrombosis using a new fibrin-specific MR contrast agent. Stroke 2007, 38, 1476–1481. [CrossRef]

18. Rezaeianpour, S.; Mosayebnia, M.; Moghimi, A.; Amidi, S.; Geramifar, P.; Kobarfard, F.; Shahhosseini, S. [18F]FDG-Labeled
CGPRPPC Peptide Serving as a Small Thrombotic Lesions Probe, Including a Comparison with [(99m)Tc]-Labeled Form. Cancer
Biother. Radiopharm. 2018, 33, 438–444. [CrossRef]

19. Ciesienski, K.L.; Yang, Y.; Ay, I.; Chonde, D.B.; Loving, G.S.; Rietz, T.A.; Catana, C.; Caravan, P. Fibrin-targeted PET probes for the
detection of thrombi. Mol. Pharm. 2013, 10, 1100–1110. [CrossRef]

20. Starmans, L.W.; Van Duijnhoven, S.M.; Rossin, R.; Berben, M.; Aime, S.; Daemen, M.J.; Nicolay, K.; Grüll, H. Evaluation of
111In-labeled EPep and FibPep as tracers for fibrin SPECT imaging. Mol. Pharm. 2013, 10, 4309–4321. [CrossRef]

21. Bertrand, M.J.; Abran, M.; Maafi, F.; Busseuil, D.; Merlet, N.; Mihalache-Avram, T.; Geoffroy, P.; Tardif, P.L.; Abulrob, A.;
Arbabi-Ghahroudi, M.; et al. In Vivo Near-Infrared Fluorescence Imaging of Atherosclerosis Using Local Delivery of Novel
Targeted Molecular Probes. Sci. Rep. 2019, 9, 2670. [CrossRef] [PubMed]

22. Hara, T.; Bhayana, B.; Thompson, B.; Kessinger, C.W.; Khatri, A.; McCarthy, J.R.; Weissleder, R.; Lin, C.P.; Tearney, G.J.; Jaffer, F.A.
Molecular imaging of fibrin deposition in deep vein thrombosis using a new fibrin-targeted near-infrared fluorescence (NIRF)
imaging strategy. JACC Cardiovasc. Imaging 2012, 5, 607–615. [CrossRef] [PubMed]

23. Zhou, Y.; Chakraborty, S.; Liu, S. Radiolabeled Cyclic RGD Peptides as Radiotracers for Imaging Tumors and Thrombosis by
SPECT. Theranostics 2011, 1, 58–82. [CrossRef] [PubMed]

24. Tung, C.H.; Ho, N.H.; Zeng, Q.; Tang, Y.; Jaffer, F.A.; Reed, G.L.; Weissleder, R. Novel factor XIII probes for blood coagulation
imaging. Chembiochem 2003, 4, 897–899. [CrossRef] [PubMed]

25. Miserus, R.J.; Herias, M.V.; Prinzen, L.; Lobbes, M.B.; Van Suylen, R.J.; Dirksen, A.; Hackeng, T.M.; Heemskerk, J.W.; van
Engelshoven, J.M.; Daemen, M.J.; et al. Molecular MRI of early thrombus formation using a bimodal alpha2-antiplasmin-based
contrast agent. JACC Cardiovasc. Imaging 2009, 2, 987–996. [CrossRef]

26. Muszbek, L.; Yee, V.C.; Hevessy, Z. Blood coagulation factor XIII: Structure and function. Thromb. Res. 1999, 94, 271–305.
[CrossRef]

27. Lee, K.N.; Lee, C.S.; Tae, W.C.; Jackson, K.W.; Christiansen, V.J.; McKee, P.A. Crosslinking of alpha 2-antiplasmin to fibrin. Ann.
N. Y. Acad. Sci. 2001, 936, 335–339. [CrossRef]

28. Robinson, B.R.; Houng, A.K.; Reed, G.L. Catalytic life of activated factor XIII in thrombi. Implications for fibrinolytic resistance
and thrombus aging. Circulation 2000, 102, 1151–1157. [CrossRef]

29. Okano, M.; Hara, T.; Nishimori, M.; Irino, Y.; Satomi-Kobayashi, S.; Shinohara, M.; Toh, R.; Jaffer, F.A.; Ishida, T.; Hirata, K.I. In
Vivo Imaging of Venous Thrombus and Pulmonary Embolism Using Novel Murine Venous Thromboembolism Model. JACC
Basic Transl. Sci. 2020, 5, 344–356. [CrossRef]

30. Schnölzer, M.; Alewood, P.; Jones, A.; Alewood, D.; Kent, S.B.H. In Situ Neutralization in Boc-chemistry Solid Phase Peptide
Synthesis. Int. J. Pept. Res. Ther. 2007, 13, 31–44. [CrossRef]

http://dx.doi.org/10.1039/C7DT02634J
http://dx.doi.org/10.1161/ATVBAHA.115.306055
http://dx.doi.org/10.1021/acssensors.1c00124
http://dx.doi.org/10.1084/jem.20112322
http://www.ncbi.nlm.nih.gov/pubmed/22451716
http://dx.doi.org/10.1055/s-0036-1571343
http://www.ncbi.nlm.nih.gov/pubmed/27056150
http://dx.doi.org/10.1097/RLI.0b013e3181b092a7
http://www.ncbi.nlm.nih.gov/pubmed/19809344
http://dx.doi.org/10.1161/01.CIR.0000134960.31304.87
http://www.ncbi.nlm.nih.gov/pubmed/15238457
http://dx.doi.org/10.1161/hc3601.094303
http://dx.doi.org/10.1161/CIRCULATIONAHA.104.522110
http://dx.doi.org/10.1161/STROKEAHA.106.479998
http://dx.doi.org/10.1089/cbr.2018.2515
http://dx.doi.org/10.1021/mp300610s
http://dx.doi.org/10.1021/mp400406x
http://dx.doi.org/10.1038/s41598-019-38970-4
http://www.ncbi.nlm.nih.gov/pubmed/30804367
http://dx.doi.org/10.1016/j.jcmg.2012.01.017
http://www.ncbi.nlm.nih.gov/pubmed/22698530
http://dx.doi.org/10.7150/thno/v01p0058
http://www.ncbi.nlm.nih.gov/pubmed/21547153
http://dx.doi.org/10.1002/cbic.200300602
http://www.ncbi.nlm.nih.gov/pubmed/12964167
http://dx.doi.org/10.1016/j.jcmg.2009.03.015
http://dx.doi.org/10.1016/S0049-3848(99)00023-7
http://dx.doi.org/10.1111/j.1749-6632.2001.tb03520.x
http://dx.doi.org/10.1161/01.CIR.102.10.1151
http://dx.doi.org/10.1016/j.jacbts.2020.01.010
http://dx.doi.org/10.1007/s10989-006-9059-7


Biomolecules 2022, 12, 829 13 of 13

31. Cipriani, F.; Bernhagen, D.; García-Arévalo, C.; de Torre, I.G.; Timmerman, P.; Rodríguez-Cabello, J.C. Bicyclic RGD peptides
with high integrin αvβ3 and α5β1 affinity promote cell adhesion on elastin-like recombinamers. Biomed. Mater. 2019, 14, 035009.
[CrossRef] [PubMed]

32. Hnatowich, D.J. Label stability in serum of four radionuclides on DTPA-coupled antibodies–an evaluation. Int. J. Rad. Appl.
Instrum. B 1986, 13, 353–358. [CrossRef]

33. Wang, X.; Smith, P.L.; Hsu, M.Y.; Gailani, D.; Schumacher, W.A.; Ogletree, M.L.; Seiffert, D.A. Effects of factor XI deficiency on
ferric chloride-induced vena cava thrombosis in mice. J. Thromb. Haemost. 2006, 4, 1982–1988. [CrossRef] [PubMed]

34. Diaz, J.A.; Obi, A.T.; Myers, D.D.; Wrobleski, S.K.; Henke, P.K.; Mackman, N.; Wakefield, T.W. Critical Review of Mouse Models
of Venous Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 556–562. [CrossRef] [PubMed]

35. Singh, S.; Houng, A.K.; Reed, G.L. Venous stasis-induced fibrinolysis prevents thrombosis in mice: Role of alpha2-antiplasmin.
Blood 2019, 134, 970–978. [CrossRef]

36. Tchaikovski, S.N.; van Vlijmen, B.J.M.; Rosing, J.; Tans, G. Development of a calibrated automated thrombography based
thrombin generation test in mouse plasma. J. Thromb. Haemost. 2007, 5, 2079–2086. [CrossRef]

37. Brill, A.; Fuchs, T.A.; Chauhan, A.K.; Yang, J.J.; De Meyer, S.F.; Kollnberger, M.; Wakefield, T.W.; Lammle, B.; Massberg, S.;
Wagner, D.D. Von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 2011,
117, 1400–1407. [CrossRef] [PubMed]

38. Diaz, J.A.; Saha, P.; Cooley, B.; Palmer, O.R.; Grover, S.P.; Mackman, N.; Wakefield, T.W.; Henke, P.K.; Smith, A.; Lal, B.K. Choosing
a mouse model of venous thrombosis: A consensus assessment of utility and application. J. Thromb. Haemost. 2019, 17, 699–707.
[CrossRef]

39. Ivashchenko, O.; van der Have, F.; Goorden, M.C.; Ramakers, R.M.; Beekman, F.J. Ultra-high-sensitivity submillimeter mouse
SPECT. J. Nucl. Med. 2015, 56, 470–475. [CrossRef]

40. Deleye, S.; Van Holen, R.; Verhaeghe, J.; Vandenberghe, S.; Stroobants, S.; Staelens, S. Performance evaluation of small-animal
multipinhole µSPECT scanners for mouse imaging. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 744–758. [CrossRef]

41. Van der Have, F.; Vastenhouw, B.; Ramakers, R.M.; Branderhorst, W.; Krah, J.O.; Ji, C.; Staelens, S.G.; Beekman, F.J. U-SPECT-II:
An Ultra-High-Resolution Device for Molecular Small-Animal Imaging. J. Nucl. Med. 2009, 50, 599–605. [CrossRef] [PubMed]

42. Khalil, M.M.; Tremoleda, J.L.; Bayomy, T.B.; Gsell, W. Molecular SPECT Imaging: An Overview. Int. J. Mol. Imaging 2011,
2011, 796025. [CrossRef] [PubMed]

43. Yap, M.L.; McFadyen, J.D.; Wang, X.; Zia, N.A.; Hohmann, J.D.; Ziegler, M.; Yao, Y.; Pham, A.; Harris, M.; Donnelly, P.S.; et al.
Targeting Activated Platelets: A Unique and Potentially Universal Approach for Cancer Imaging. Theranostics 2017, 7, 2565–2574.
[CrossRef] [PubMed]

http://dx.doi.org/10.1088/1748-605X/aafd83
http://www.ncbi.nlm.nih.gov/pubmed/30630151
http://dx.doi.org/10.1016/0883-2897(86)90009-7
http://dx.doi.org/10.1111/j.1538-7836.2006.02093.x
http://www.ncbi.nlm.nih.gov/pubmed/16961605
http://dx.doi.org/10.1161/ATVBAHA.111.244608
http://www.ncbi.nlm.nih.gov/pubmed/22345593
http://dx.doi.org/10.1182/blood.2019000049
http://dx.doi.org/10.1111/j.1538-7836.2007.02719.x
http://dx.doi.org/10.1182/blood-2010-05-287623
http://www.ncbi.nlm.nih.gov/pubmed/20959603
http://dx.doi.org/10.1111/jth.14413
http://dx.doi.org/10.2967/jnumed.114.147140
http://dx.doi.org/10.1007/s00259-012-2326-2
http://dx.doi.org/10.2967/jnumed.108.056606
http://www.ncbi.nlm.nih.gov/pubmed/19289425
http://dx.doi.org/10.1155/2011/796025
http://www.ncbi.nlm.nih.gov/pubmed/21603240
http://dx.doi.org/10.7150/thno.19900
http://www.ncbi.nlm.nih.gov/pubmed/28819447

	Introduction
	Materials and Methods
	Peptide Synthesis and Radiolabelling
	In Vitro Probe Validation
	Animals
	Ferric Chloride Thrombosis Model
	Ivc Stenosis Thrombosis Model
	Computed Tomography (CT)
	Single-Photon Emission Computed Tomography (SPECT)
	Biodistribution
	Histology

	Results
	Peptide Synthesis
	In Vitro Probe Incorporation
	Validation of Mouse DVT Models
	In Vivo Thrombus Imaging in Vena Cava

	Discussion
	References

